Patients
This was a retrospective case-control study performed using a subgroup from a total of 1,426 surgically-treated patients with echinococcosis who were hospitalized at the First Affiliated Hospital of Xinjiang Medical University between October 2008 and September 2013. These patients were identified from the hospital’s medical database. All patients presenting with a parasitic infection were prospectively entered in this database. Among these 1,426 patients, 18 suffered from anaphylactic shock due to cystic fluid outflow during surgery, 2 cases of which missing data for the cyst size were excluded. For each of these patients, 3 age-matched controls (n=43) with pulmonary or hepatic echinococcosis and who were found with cystic fluid outflow during the operation but did not develop anaphylactic shock were selected from the patients with echinococcosis.
In this study, all patients were with Echinococcus granulosus. Patients who met 1 or more of the following criteria were excluded: 1) with other co-infections, including viral hepatitis, AIDS, or syphilis; 2) a history of anaphylactic shock from any other cause; or 3) any chronic or acute organ diseases.
Anaphylactic shock was diagnosed according to the criteria by Sampson et al. [
15] from the National Institute of Allergy and Infectious Diseases, USA. In brief, patients with the following symptoms within several minutes to several hours were diagnosed with anaphylactic shock: 1) blood pressure sharply decreased to <80/50 mmHg after cystic fluid outflow or systolic pressure decreased by more than 30% of the basal blood pressure; and 2) allergy-related symptoms, including lesions of the skin and mucosa (wheal, pruritus all over the body, and oral edema) and airway obstruction (such as asphyxia, asthma, tracheospasm, stridor, and reduced peak expiratory flow before or at the same time as the blood pressure decrease.
This study was approved by the ethics committee of the First Affiliated Hospital of Xinjiang Medical University, China.
Data collection
Demographic and immunological data of 59 patients (16 with anaphylactic shock and 43 without anaphylactic shock) were collected from the standard questionnaires that are filled for all patients with suspected CE at hospital admission, and analyzed. Demographic data (age, sex, height, weight, ethnicity, blood type, history of allergy, place of residence, time of contact with dogs, cows or sheep, and family history of allergy), clinical symptoms (rash, stridor, the lowest blood pressure at shock, the highest airway pressure, hypoxemia, oxygen saturation at the lowest pulse, and arrhythmia), laboratory examinations (anti-EgCF, anti-EgP, anti-EgB, and anti-Em2), blood routine examination (blood cell counts, hemoglobin, and hematocrit), biochemical examinations (total protein, albumin, globulin, A-albumin, α1-globulin, α2-globulin, β1-globulin, β2-globulin, and γ-globulin), imaging data (type of imaging examination, site, number, and size of cysts, number of daughter cysts, rupture of cyst, infection, and imaging diagnosis), and immunological examinations (IgE, IgG, IgG1, IL-4, IL-10, IFN-γ, and TNF-α) were retrieved from the medical charts. All laboratory tests were performed the day before surgery. These data/tests were all standard data that were documented when patients with suspected CE visited our hospital.
IL-4 (sensitivity: 2 ng/L; detection range: 16.6–1,000 ng/L), IL-10 (sensitivity: 7 pg/ml; detection range: 15.6–1,000 pg/ml), INF-γ (sensitivity: 4 ng/L; detection range: 15.6–1,000 ng/L), TNF-α (sensitivity: 4 pg/ml; detection range: 15.6–1,000×10−6 μg/ml), IgE, IgG, and IgG1 (for all 3 items, sensitivity: 1.0 ng/ml; detection range: 0–800 ng/ml) were tested using ELISA kits (BD Biosciences, San Jose, California, USA), according to the manufacturer’s instructions.
Anti-EgCF, anti-EgP, anti-EgB, and anti-Em2 were tested using the Dot Immunogold Filtration Assay (DIGFA) kit for human echinococcosis (Xinjiang Beisiming Biotechnology Development Co., Urumqi, Xinjiang) (catalog # Q/XZF002-2015). This kit has been described by Feng et al. [
16]. The membrane has 4 dots; A, B, C, and D (
Supplementary Fig. 1) that are coated with hydatid cystic fluid antigen, scolex antigen, semi-purified cystic fluid antigen, and alveolar hydatid specific antigen Em2, respectively. In the center of the nitrocellulose membrane, there is a dot coated with normal serum as quality control (
Supplementary Fig. 1). Briefly, 2 drops of whole blood were taken from the earlobe and mixed with 2 drops of potato agglutinin, diluted with 3 drops of solution A, and transferred to the wells of the reaction plate. The plate was washed with 3 drops of solution B. The background signal was washed away with 3 drops of solution B. The plate was then read. Red dots in the corners of the blot were considered positive; otherwise, it was negative (
Supplementary Fig. 2). Based on the intensity of the color, positive results could be classified into + (if the color is close to that of the quality control spot in the center of the blot), ++ (if the color is the same as the quality control spot), +++ (if the color is more intense than the quality control spot). The positive initial screening was determined by positive signals in wells A and B.
E. granulosus was determined by positive signals in wells A, B, and C. Alveolar echinococcosis was determined by positive signals in wells A, B, and D.
The cyst size was recorded, and the cysts were classified according to the WHO imaging-based classification [
17,
18]. CE1 (single cyst); the hydatid cyst if filled with water-like fluid. CE2 (multiple cysts); multiple small ball-shaped dark images or halo can be seen in the dark area of the mother cyst, which forms the characteristic picture of “cyst in cyst”. CE3 (broken inner cyst); when the inner cyst broke, fluid goes to the space in between inner and outer walls and a “lens of cyst” sign is displayed. CE4 (solid cyst); hydatid cyst regresses gradually and shrinks. CE5 (calcification); during the prolonged stage of
E. granulosus, the outer wall becomes hypertrophic with calcium deposition or totally calcified.
Treatment data and patient outcomes (including the development, duration, treatments, and outcomes of anaphylactic shock) included: 1) general characteristics (time of echinococcosis diagnosis, fever, history of cystectomy, comorbidities, history of anti-echinococcosis medical therapy, operation method, and use of glucocorticoids before cyst isolation); 2) data during the shock (rupture of cysts, outflow of cystic fluid, volume of outflowed cystic fluid, property of the cystic fluid, and the site of outflow), and time between cyst puncture and shock (min); 3) treatments (pure oxygen inhalation, use of epinephrine, use of dopamine, use of adrenocortical hormones, type of fluid therapy, and volume of fluid infusion).
Statistical analysis
Matching was performed using the database of cases of echinococcosis treated at our hospital. SPSS 19.0 software (IBM, Armonk, New York, USA) was used for statistical analyses. If normally distributed, data are expressed as means±SD, and were compared using the independent samples t-test. If the data were not normally distributed, they were expressed as median (range), and compared using the Mann-Whitney U test. Categorical variables were expressed as proportions, and were compared using the Fisher’s exact test or the chi-square test, as appropriate. Multivariate logistical regression analysis was used to identify factors associated with anaphylactic shock.
Selected variables with P-values <0.5 in the univariate analyses were considered for inclusion in the regression model, but because the sample size was small, categorical variables were not considered for the regression model. Finally, IL-4, IgE, IgG, TNF-α, and cyst size were considered for inclusion in the regression model. The discriminative ability to identify anaphylactic shock with risk markers of IL-4 and cyst size was verified using the area under the receiver operating characteristic (ROC) curve (AUC). P<0.05 was considered statistically significant.