6. Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 2018;27(3):613-635
https://doi.org/10.1111/mec.14486
7. Singh OP, Nanda N, Chandra D, Jha D, Adak T, et al. Modified PCR-based assay for the differentiation of members of
Anopheles fluviatilis complex in consequence of the discovery of a new cryptic species (species V). Malar J 2020;19(1):96
https://doi.org/10.1186/s12936-020-03172-1
8. Takano KT, Nguyen NT, Nguyen BT, Sunahara T, Yasunami M, et al. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus
Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam. Parasit Vectors 2010;3:41
https://doi.org/10.1186/1756-3305-3-41
9. Khazal RM, Flaih MH, Kadhim MK, Hussein KR. Genetic diversity of
Leishmania major isolated from different dermal lesions using ITS2 region. Acta Parasitol 2024;69(1):831-838
https://doi.org/10.1007/s11686-024-00817-y
12. World Health Organization. Malaria Entomology and Vector Control. World Health Organization. Geneva, Switzerland. 2013, pp 24-32.
13. O’Connor CT, Soepanto A. Illustrated Key to Female Anophelines of Indonesia. Directorate of Communicable Disease, Ministry of Health of the Republic of Indonesia. Jakarta, Indonesia. 1979, pp 5-17.
14. Garjito TA, Widiastuti U, Mujiyono M, Prihatin MT, Widiarti W, et al. Genetic homogeneity of
Anopheles maculatus in Indonesia and origin of a novel species present in Central Java. Parasit Vectors 2019;12(1):351
https://doi.org/10.1186/s13071-019-3598-1
20. Ali RSM, Wahid I, Saeung A, Wannasan A, Harbach RE, et al. Genetic and morphological evidence for a new species of the Maculatus Group of
Anopheles subgenus
Cellia (Diptera: Culicidae) in Java, Indonesia. Parasit Vectors 2019;12(1):107
https://doi.org/10.1186/s13071-019-3358-2
24. Bunmee K, Thaenkham U, Saralamba N, Ponlawat A, Zhong D, et al. Population genetic structure of the malaria vector
Anopheles minimus in Thailand based on mitochondrial DNA markers. Parasit Vectors 2021;14(1):496
https://doi.org/10.1186/s13071-021-04998-7
25. Sarma DK, Prakash A, O’Loughlin SM, Bhattacharyya DR, Mohapatra PK, et al. Genetic population structure of the malaria vector
Anopheles baimaii in north-east India using mitochondrial DNA. Malar J 2012;11:76
https://doi.org/10.1186/1475-2875-11-76
26. Morgan K, O’Loughlin SM, Chen B, Linton YM, Thongwat D, et al. Comparative phylogeography reveals a shared impact of pleistocene environmental change in shaping genetic diversity within nine
Anopheles mosquito species across the Indo-Burma biodiversity hotspot. Mol Ecol 2011;20(21):4533-4549
https://doi.org/10.1111/j.1365-294X.2011.05268.x
27. Chaiphongpachara T, Laojun S, Changbunjong T, Sumruayphol S, Suwandittakul N, et al. Genetic diversity, haplotype relationships, and
kdr mutation of malaria
Anopheles vectors in the most
Plasmodium knowlesi-endemic area of Thailand. Trop Med Infect Dis 2022;7(12):412
https://doi.org/10.3390/tropicalmed7120412
28. Walton C, Somboon P, O’Loughlin SM, Zhang S, Harbach RE, et al. Genetic diversity and molecular identification of mosquito species in the
Anopheles maculatus group using the ITS2 region of rDNA. Infect Genet Evol 2007;7(1):93-102
https://doi.org/10.1016/j.meegid.2006.05.001
29. Harris C, Morlais I, Churcher TS, Awono-Ambene P, Gouagna LC, et al.
Plasmodium falciparum produce lower infection intensities in local versus foreign
Anopheles gambiae populations. PLoS One 2012;7(1):e30849
https://doi.org/10.1371/journal.pone.0030849
30. Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, et al. The genetic basis of host preference and resting behavior in the major African malaria vector,
Anopheles arabiensis. PLoS Genet 2016;12(9):e1006303
https://doi.org/10.1371/journal.pgen.1006303
31. Djogbénou L, Chandre F, Berthomieu A, Dabiré R, Koffi A, et al. Evidence of introgression of the ace-1(R) mutation and of the
ace-1 duplication in West African
Anopheles gambiae s. s. PLoS One 2008;3(5):e2172
https://doi.org/10.1371/journal.pone.0002172
32. Weeraratne TC, Surendran SN, Walton C, Karunaratne SHPP. Genetic diversity and population structure of malaria vector mosquitoes
Anopheles subpictus,
Anopheles peditaeniatus, and
Anopheles vagus in five districts of Sri Lanka. Malar J 2018;17(1):271
https://doi.org/10.1186/s12936-018-2419-x
33. Davidson JR, Wahid I, Sudirman R, Small ST, Hendershot AL, et al. Molecular analysis reveals a high diversity of
Anopheles species in Karama, West Sulawesi, Indonesia. Parasit Vectors 2020;13(1):379
https://doi.org/10.1186/s13071-020-04252-6
34. Chen B, Harbach RE, Walton C, He Z, Zhong D, et al. Population genetics of the malaria vector
Anopheles aconitus in China and Southeast Asia. Infect Genet Evol 2012;12(8):1958-1967
https://doi.org/10.1016/j.meegid.2012.08.007
35. Liebman KA, Pinto J, Valle J, Palomino M, Vizcaino L, et al. Novel mutations on the
ace-1 gene of the malaria vector
Anopheles albimanus provide evidence for balancing selection in an area of high insecticide resistance in Peru. Malar J 2015;14:74
https://doi.org/10.1186/s12936-015-0599-1