Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

2
results for

"Hyun S. Lillehoj"

Article category

Keywords

Publication year

Authors

Funded articles

"Hyun S. Lillehoj"

Original Article

Expression of Chicken NK-Lysin and Its Role in Chicken Coccidiosis Induced by Eimeria necatrix
Woo Hyun Kim, Wongi Min, Kwang Il Park, Hyun S. Lillehoj, Cherry P. Fernandez-Colorado, Rochelle A. Flores, Paula Leona T. Cammayo, Binh Thanh Nguyen
Korean J Parasitol 2021;59(5):439-445.
Published online October 22, 2021
DOI: https://doi.org/10.3347/kjp.2021.59.5.439
Coccidiosis in chickens is an intestinal parasitic disease caused by protozoan parasites named Eimeria spp. In some Eimeria infections, intestinal lymphocytes are known to highly express chicken NK-lysin (cNK-lysin), an antimicrobial peptide with anticoccidial activity. Therefore, this study aims to investigate the expression of cNK-lysin in E. necatrix-infected chickens and its role in E. necatrix infection. The expression of cNK-lysin transcript was significantly increased in E. necatrix sporozoites-treated lymphocytes. In E. necatrix infection, cNK-lysin transcript was induced in intestinal lymphocytes but not in the spleen. The recombinant cNK-lysin exhibited anticoccidial activity against E. necatrix sporozoites as well as immunomodulatory activity on macrophages by inducing proinflammatory cytokines. These results indicated that E. necatrix infection induces high local expression of cNK-lysin and the secreted cNK-lysin helps protect coccidiosis.

Citations

Citations to this article as recorded by  Crossref logo
  • Characterization of NK-lysin A, a potent antimicrobial peptide from the zebrafish Danio rerio
    Marius Ortjohann, Matthias Leippe
    Developmental & Comparative Immunology.2025; 162: 105266.     CrossRef
  • Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function
    Pan Chen, Mujeeb Ur Rehman, Yanfeng He, Aoyun Li, Fuchun Jian, Longxian Zhang, Shucheng Huang
    Veterinary Quarterly.2025; 45(1): 1.     CrossRef
  • Development and immunological insights into recombinant/subunit vaccines against avian coccidiosis
    Shagufta Iqbal, Syed Tanveer, Idrees Mehraj Allaie, Yasmeena Jan, Shahana Tramboo, Nazima Maqbool
    Journal of Microbiological Methods.2025; 238: 107255.     CrossRef
  • Orally delivered Bacillus subtilis expressing chicken NK-2 peptide stabilizes gut microbiota and enhances intestinal health and local immunity in coccidiosis-infected broiler chickens
    Samiru S. Wickramasuriya, Inkyung Park, Youngsub Lee, Luciana M. Richer, Chris Przybyszewski, Cyril G. Gay, Jolieke G. van Oosterwijk, Hyun S. Lillehoj
    Poultry Science.2023; 102(5): 102590.     CrossRef
  • Research progress of the avian coccidiosis vaccine
    Haiming Cai, Nanshan Qi, Juan Li, Minna Lv, Xuhui Lin, Junjing Hu, Jianfei Zhang, Shenquan Liao, Mingfei Sun
    Veterinary Vaccine.2022; 1(1): 100002.     CrossRef
  • 5,020 View
  • 157 Download
  • 4 Web of Science
  • Crossref
Brief Communication
Effects of Simple and Disposable Chicken Cages for Experimental Eimeria Infections
Jeongmi Yoo, Sung H. Kang, Jipseol Jeong, Woo H. Kim, Suk Kim, Hyun S. Lillehoj, Wongi Min
Korean J Parasitol 2011;49(3):299-302.
Published online September 30, 2011
DOI: https://doi.org/10.3347/kjp.2011.49.3.299

During experimental Eimeria infections in chickens, facilities are often contaminated by fecal oocysts known to be highly resistant to both chemical and enzymatic treatments. Thus, studies using experimental Eimeria infections have been limited due to the difficulty of complete elimination of residual oocysts from both cages and facilities. To overcome this limitation, simple, inexpensive, and disposable cages were constructed from cardboard boxes and tested during experimental Eimeria maxima infections. The cages were used in animal rooms with only a 1.7% evidence of coccidia contamination between adjacent cages. No significant differences in fecal oocyst output and body weight gain were noted between animals housed in disposable cages and animals housed in wire control cages. This cage design is a useful means for preventing oocyst contamination during experimental conditions, suggesting that this disposable cage design could be used for other avian infectious disease studies.

Citations

Citations to this article as recorded by  Crossref logo
  • Different strategies for producing naturally soluble form of common cytokine receptor γ chain
    Jipseol Jeong, Woo H. Kim, Cherry P. Fernandez, Suk Kim, Yong-Hwan Kim, Hyung-Kwan Jang, Hyun S. Lillehoj, Hee-Jong Woo, Wongi Min
    Developmental & Comparative Immunology.2015; 48(1): 13.     CrossRef
  • Chicken IL-17F: Identification and comparative expression analysis in Eimeria-infected chickens
    Woo H. Kim, Jipseol Jeong, Ae R. Park, Dongjean Yim, Yong-Hwan Kim, Kwang D. Kim, Hong H. Chang, Hyun S. Lillehoj, Byung-Hyung Lee, Wongi Min
    Developmental & Comparative Immunology.2012; 38(3): 401.     CrossRef
  • Identification and Comparative Expression Analysis of Interleukin 2/15 Receptor β Chain in Chickens Infected with E. tenella
    Jipseol Jeong, Woo H. Kim, Jeongmi Yoo, Changhwan Lee, Suk Kim, Jae-Hyeon Cho, Hyung-Kwan Jang, Dong W. Kim, Hyun S. Lillehoj, Wongi Min, Ivan Cruz Moura
    PLoS ONE.2012; 7(5): e37704.     CrossRef
  • 7,769 View
  • 66 Download
  • Crossref