Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.
Citations
Citations to this article as recorded by
A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia Jui-Hsuan Wu, Jen-Chi Lee, Chun-Che Ho, Pei-Wei Chiu, Chin-Hung Sun Biology Direct.2023;[Epub] CrossRef
Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate Yana Shaulov, Chikako Shimokawa, Meirav Trebicz-Geffen, Shruti Nagaraja, Karen Methling, Michael Lalk, Lea Weiss-Cerem, Ayelet T. Lamm, Hajime Hisaeda, Serge Ankri, William A. Petri PLOS Pathogens.2018; 14(10): e1007295. CrossRef