Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

6
results for

"Sanghyun Lee"

Article category

Keywords

Publication year

Authors

Funded articles

"Sanghyun Lee"

Brief Communications

Glucose-6-phosphate dehydrogenase variants in Kachin, Myanmar
Zin Moon, Ja Moon Aung, Dorene VanBik, Hae Soo Yun, Sanghyun Lee, Sylvatrie-Danne Dinzouna-Boutamba, Zau Ring, Yeonchul Hong, Dong-Il Chung, Youn-Kyoung Goo
Parasites Hosts Dis 2025;63(4):360-363.
Published online November 19, 2025
DOI: https://doi.org/10.3347/PHD.25053
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive genetic disorder that can cause severe anemia in affected individuals exposed to oxidative stress. This risk is particularly relevant in patients treated with the antimalarial drug primaquine. In Myanmar, primaquine has been widely administered as a Plasmodium vivax malaria treatment; however, prevalence of G6PD deficiency among the population remains insufficiently characterized. This study investigated the prevalence of G6PD variants among various minority ethnic subgroups residing in Kachin State, Myanmar. Blood samples from 440 participants were analyzed; however, the Mahidol variant (G487A) was identified in 21 individuals (4.8%). A major limitation of this study was the absence of G6PD enzyme activity data to confirm whether the Mahidol variant induces G6PD deficiency.
  • 291 View
  • 11 Download
Distribution and genotypes of Enterocytozoon bieneusi in raccoon dogs in Korea
Heon-Moo Park, Haeseung Lee, Su-Jin Chae, Kidong Son, Sanghyun Lee, Kaifa Nazim, Seung-Hun Lee, Yoonhoi Koo, Jinsu Kang, Min-Goo Seo, Sang Joon Park, Man Hee Rhee, Dongmi Kwak
Parasites Hosts Dis 2025;63(3):258-263.
Published online August 20, 2025
DOI: https://doi.org/10.3347/PHD.25029
Enterocytozoon is a genus of microsporidian parasites, with Enterocytozoon bieneusi being a well-known species. It infects various mammalian hosts, including humans, and exhibits zoonotic potential. Out of the 97 fecal and intestinal samples collected from wild raccoon dogs in Korea, 12 (12.4%) tested positive for E. bieneusi via PCR, revealing 2 genotypes: genotype D and EbpA. Both genotypes were found to belong to the zoonotic Group 1. Notably, this study is the first to report the EbpA genotype in Korea. Although studies on E. bieneusi in raccoon dogs are relatively limited, the findings suggest potential public health concerns.
  • 1,605 View
  • 34 Download
Original Articles
Population genetic analysis of Plasmodium vivax vir genes in Pakistan
Sylvatrie-Danne Dinzouna-Boutamba, Zin Moon, Sanghyun Lee, Sahib Gul Afridi, Hương Giang Lê, Yeonchul Hong, Byoung-Kuk Na, Youn-Kyoung Goo
Parasites Hosts Dis 2024;62(3):313-322.
Published online August 26, 2024
DOI: https://doi.org/10.3347/PHD.24036
Plasmodium vivax variant interspersed repeats (vir) refer to the key protein used for escaping the host immune system. Knowledge in the genetic variation of vir genes can be used for the development of vaccines or diagnostic methods. Therefore, we evaluated the genetic diversity of the vir genes of P. vivax populations of several Asian countries, including Pakistan, which is a malaria-endemic country experiencing a significant rise in malaria cases in recent years. We analyzed the genetic diversity and population structure of 4 vir genes (vir 4, vir 12, vir 21, and vir 27) in the Pakistan P. vivax population and compared these features to those of the corresponding vir genes in other Asian countries. In Pakistan, vir 4 (S=198, H=9, Hd=0.889, Tajima’s D value=1.12321) was the most genetically heterogenous, while the features of vir 21 (S=8, H=7, Hd=0.664, Tajima’s D value =-0.63763) and vir 27 (S =25, H =11, Hd =0.682, Tajima’s D value=-2.10836) were relatively conserved. Additionally, vir 4 was the most genetically diverse among Asian P. vivax populations, although within population diversity was low. Meanwhile, vir 21 and vir 27 among all Asian populations were closely related genetically. Our findings on the genetic diversity of vir genes and its relationships between populations in diverse geographical locations contribute toward a better understanding of the genetic characteristics of vir. The high level of genetic diversity of vir 4 suggests that this gene can be a useful genetic marker for understanding the P. vivax population structure. Longitudinal genetic diversity studies of vir genes in P. vivax isolates obtained from more diverse geographical areas are needed to better understand the function of vir genes and their use for the development of malaria control measures, such as vaccines.

Citations

Citations to this article as recorded by  Crossref logo
  • Genetic polymorphisms of merozoite surface protein-3α in Plasmodium vivax isolates from Pakistan
    Kim Oanh Nguyễn, Jung-Mi Kang, Tuấn Cường Võ, Hương Giang Lê, Seemab Akhtar, Thu Hằng Nguyễn, Đăng Thùy Dương Nguyễn, Minkyoung Cho, Sahib Gul Afridi, Byoung-Kuk Na
    Acta Tropica.2025; 272: 107904.     CrossRef
  • Genetic polymorphism of Duffy binding protein in Pakistan Plasmodium vivax isolates
    Đăng Thùy Dương Nguyễn, Tuấn Cường Võ, Kim Oanh Nguyễn, Hương Giang Lê, Jung-Mi Kang, Thu Hằng Nguyễn, Minkyoung Cho, Sahib Gul Afridi, Byoung-Kuk Na
    Acta Tropica.2024; 260: 107421.     CrossRef
  • 3,093 View
  • 78 Download
  • 2 Web of Science
  • Crossref
Prevalence and molecular analysis of glucose-6-phosphate dehydrogenase deficiency in Chin State, Myanmar
Ja Moon Aung, Zin Moon, Dorene VanBik, Sylvatrie-Danne Dinzouna-Boutamba, Sanghyun Lee, Zau Ring, Dong-Il Chung, Yeonchul Hong, Youn-Kyoung Goo
Parasites Hosts Dis 2023;61(2):154-162.
Published online May 23, 2023
DOI: https://doi.org/10.3347/PHD.23004
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by X-linked recessive disorderliness. It induces severe anemia when a patient with G6PD deficiency is exposed to oxidative stress that occurs with administration of an antimalarial drug, primaquine. The distribution of G6PD deficiency remains unknown while primaquine has been used for malaria treatment in Myanmar. This study aimed to investigate the prevalence of G6PD deficiency and its variants in Chin State, Myanmar. Among 322 participants, 18 (11 males and 7 females) demonstrated a G6PD deficiency. Orissa variant was dominant in the molecular analysis. This would be related to neighboring Indian and Bangladeshi population, in which Orissa variant was also reported as the main mutation type. The screening test for G6PD deficiency before primaquine treatment appears to be important in Myanmar.

Citations

Citations to this article as recorded by  Crossref logo
  • Glucose-6-phosphate dehydrogenase variants in Kachin, Myanmar
    Zin Moon, Ja Moon Aung, Dorene VanBik, Hae Soo Yun, Sanghyun Lee, Sylvatrie-Danne Dinzouna-Boutamba, Zau Ring, Yeonchul Hong, Dong-Il Chung, Youn-Kyoung Goo
    Parasites, Hosts and Diseases.2025; 63(4): 360.     CrossRef
  • Genetic diversity of Plasmodium falciparum erythrocyte membrane protein 1 in field isolates: Correspondence
    Amnuay Kleebayoon, Viroj Wiwanitkit
    Parasites, Hosts and Diseases.2023; 61(3): 338.     CrossRef
  • 4,325 View
  • 176 Download
  • 2 Web of Science
  • Crossref
Genetic diversity of Plasmodium falciparum erythrocyte membrane protein 1 in field isolates from central Myanmar
Sylvatrie-Danne Dinzouna-Boutamba, Sanghyun Lee, Zin Moon, Dong-Il Chung, Yeonchul Hong, Moe Kyaw Myint, Haung Naw, Byoung-Kuk Na, Youn-Kyoung Goo
Parasites Hosts Dis 2023;61(1):24-32.
Published online February 22, 2023
DOI: https://doi.org/10.3347/PHD.22165
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var multigene family, is a highly polymorphic antigen that plays a crucial role in the pathology of malaria. The contribution of the genetic diversity of var toward the immune escape of P. falciparum has not yet been fully elucidated. This study aimed to characterize the diversity of var repertoires by screening P. falciparum Duffy-binding-like α domain (PfDBLα) among field isolates from central Myanmar. Genetic analysis revealed that the D-H segments of var in Myanmar populations have an extensive polymorphic repertoire, with high numbers of unique sequence types in each individual. However, var genes from the global population, including Myanmar, shared close genetic lineages regardless of their geographic origins, indicating that they have not undergone rapid evolutionary changes.

Citations

Citations to this article as recorded by  Crossref logo
  • Exploring the Potential of miRNA-92a-3p as Lead for Sequence-Based Therapies for Malaria
    Sowmya R. Prabhu, Sayandrila Paul, Shashikiran Umakanth, Manjunath Hande, Abdul Vahab Saadi, Himanshu Gupta, Kapaettu Satyamoorthy
    Acta Parasitologica.2025;[Epub]     CrossRef
  • Genetic diversity of Plasmodium falciparum erythrocyte membrane protein 1 in field isolates: Correspondence
    Amnuay Kleebayoon, Viroj Wiwanitkit
    Parasites, Hosts and Diseases.2023; 61(3): 338.     CrossRef
  • 5,313 View
  • 183 Download
  • 3 Web of Science
  • Crossref
Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation
Ui-han Son, Sylvatrie-Danne Dinzouna-Boutamba, Sanghyun Lee, Hae Soo Yun, Jung-Yeon Kim, So-Young Joo, Sookwan Jeong, Man Hee Rhee, Yeonchul Hong, Dong-Il Chung, Dongmi Kwak, Youn-Kyoung Goo
Korean J Parasitol 2017;55(2):149-158.
Published online April 30, 2017
DOI: https://doi.org/10.3347/kjp.2017.55.2.149
Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (π and Θw), and Tajima’s D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima’s D values for vir 27 (1.08530, p>0.1), vir 12 (2.89007, p<0.01), and vir 21 (0.40782, p>0.1) were positive, and that of vir 4 (-1.32162, p>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

Citations

Citations to this article as recorded by  Crossref logo
  • Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development
    Joseph Hawadak, Aditi Arya, Shewta Chaudhry, Vineeta Singh
    Genomics & Informatics.2024;[Epub]     CrossRef
  • Population genetic analysis of Plasmodium vivax vir genes in Pakistan
    Sylvatrie-Danne Dinzouna-Boutamba, Zin Moon, Sanghyun Lee, Sahib Gul Afridi, Hương Giang Lê, Yeonchul Hong, Byoung-Kuk Na, Youn-Kyoung Goo
    Parasites, Hosts and Diseases.2024; 62(3): 313.     CrossRef
  • Immunological characterization of a VIR protein family member (VIR-14) in Plasmodium vivax-infected subjects from different epidemiological regions in Africa and South America
    Raianna F. Fantin, Camila H. Coelho, Anne D. Berhe, Luisa M. D. Magalhães, Dhélio B. Pereira, Nichole D. Salinas, Niraj H. Tolia, Chanaki Amaratunga, Seila Suon, Issaka Sagara, David L. Narum, Ricardo T. Fujiwara, Claudia Abejon, Antonio Campos-Neto, Patr
    PLOS Neglected Tropical Diseases.2023; 17(4): e0011229.     CrossRef
  • Vivax Malaria and the Potential Role of the Subtelomeric Multigene vir Superfamily
    Youn-Kyoung Goo
    Microorganisms.2022; 10(6): 1083.     CrossRef
  • Genetic polymorphism of vir genes of Plasmodium vivax in Myanmar
    Byoung-Kuk Na, Tong-Soo Kim, Khin Lin, Moon-Chang Baek, Dong-Il Chung, Yeonchul Hong, Youn-Kyoung Goo
    Parasitology International.2021; 80: 102233.     CrossRef
  • Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea
    Sanghyun Lee, Young-Ki Choi, Youn-Kyoung Goo
    Malaria Journal.2021;[Epub]     CrossRef
  • Succinate dehydrogenase gene as a marker for studying Blastocystis genetic diversity
    Adriana Higuera, Marina Muñoz, Myriam Consuelo López, Patricia Reyes, Plutarco Urbano, Oswaldo Villalobos, Juan David Ramírez
    Heliyon.2020; 6(11): e05387.     CrossRef
  • A bite to fight: front-line innate immune defenses against malaria parasites
    Stephanie Tannous, Esther Ghanem
    Pathogens and Global Health.2018; 112(1): 1.     CrossRef
  • Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea
    Young Yil Bahk, Jeonga Kim, Seong Kyu Ahn, Byoung-Kuk Na, Jong-Yil Chai, Tong-Soo Kim
    The Korean Journal of Parasitology.2018; 56(6): 545.     CrossRef
  • 12,008 View
  • 155 Download
  • 9 Web of Science
  • Crossref