Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains

The Korean Journal of Parasitology 2011;49(1):17-23.
Published online: March 18, 2011

1Department of Medical Parasitology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

3Department of Medical Parasitology and Mycology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran.

4Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Corresponding author (jasem.saki@gmail.com)
• Received: December 28, 2010   • Revised: January 23, 2011   • Accepted: January 25, 2011

© 2011, Korean Society for Parasitology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 12,560 Views
  • 99 Download
  • 37 Crossref
  • 57 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Miltefosine reduces coxsackievirus B3 lethality of mice with enhanced STAT3 activation
    Chun Yu Zhang, Cheng-Huei Hung, Yi-Ling Hsiao, Tung-Miao Chang, Yu-Chieh Su, Li-Chiu Wang, Shih-Min Wang, Shun-Hua Chen
    Antiviral Research.2024; 223: 105824.     CrossRef
  • Appraisal of Chitosan-Coated Lipid Nano-Combination with Miltefosine and Albendazole in the Treatment of Murine Trichinellosis: Experimental Study with Evaluation of Immunological and Immunohistochemical Parameters
    Asmaa F. Ibrahim, Sahar M. Selim, Dalia A. Shafey, Dina M. Sweed, Shaimaa A. Farag, Marwa A. Gouda
    Acta Parasitologica.2024; 69(1): 929.     CrossRef
  • Successful treatment of complex cutaneous leishmaniasis (L. tropica) in a 3‐year‐old Syrian boy with miltefosine
    Linda Golle, Cord Sunderkötter, Jovine Ehrenreich, Johannes Wohlrab
    JDDG: Journal der Deutschen Dermatologischen Gesellschaft.2024; 22(8): 1153.     CrossRef
  • Erfolgreiche Therapie einer komplexen kutanen Leishmaniose (L. tropica) bei einem 3‐jährigen syrischen Jungen mit Miltefosin
    Linda Golle, Cord Sunderkötter, Jovine Ehrenreich, Johannes Wohlrab
    JDDG: Journal der Deutschen Dermatologischen Gesellschaft.2024; 22(8): 1153.     CrossRef
  • Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway
    Eun-Ju Jung, Woo-Jin Lee, Jeong-Won Bae, Woo-Sung Kwon
    Environmental Toxicology and Pharmacology.2024; 111: 104565.     CrossRef
  • Anti-leishmanial activity of Hypericum Scabrum extract against Leishmania major
    Reza Saberi, Zaynab Jamshidzad, Elaheh Karimi, Jahangir Abdi, Razi Naserifar, Asad Mirzaei
    AMB Express.2024;[Epub]     CrossRef
  • A short-term method to evaluate anti-leishmania drugs by inhibition of stage differentiation in Leishmania mexicana using flow cytometry
    Christian Florian Teh-Poot, Victor Manuel Dzul-Huchim, Jonathan M. Mercado, Liliana Estefanía Villanueva-Lizama, Maria Elena Bottazzi, Kathryn M. Jones, Francis T.F. Tsai, Julio Vladimir Cruz-Chan
    Experimental Parasitology.2023; 249: 108519.     CrossRef
  • The Antileishmanial Activity of Eugenol Associated with Lipid Storage Reduction Rather Than Membrane Properties Alterations
    Kristelle Hughes, Thanh Binh Le, Patrick Van Der Smissen, Donatienne Tyteca, Marie-Paule Mingeot-Leclercq, Joëlle Quetin-Leclercq
    Molecules.2023; 28(9): 3871.     CrossRef
  • Laurequinone, a Lead Compound against Leishmania
    Sara García-Davis, Atteneri López-Arencibia, Carlos J. Bethencourt-Estrella, Desirée San Nicolás-Hernández, Ezequiel Viveros-Valdez, Ana R. Díaz-Marrero, José J. Fernández, Jacob Lorenzo-Morales, José E. Piñero
    Marine Drugs.2023; 21(6): 333.     CrossRef
  • In vitro efficacy of polymer coated miltefosine drug against leishmania tropica
    Mehvish Khokhar, Muhammad Adnan Shereen, Momin Khan, Rahat Ullah Khan, Aamir Sohail, Imdad Ullah Khan, Inam Ullah Khan, Saadullah Khattak
    Journal of Parasitic Diseases.2022; 46(2): 366.     CrossRef
  • Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis
    Gert-Jan Wijnant, Franck Dumetz, Laura Dirkx, Dimitri Bulté, Bart Cuypers, Katrien Van Bocxlaer, Sarah Hendrickx
    Frontiers in Tropical Diseases.2022;[Epub]     CrossRef
  • The Effect of Curcumin on the Expression of INFγ, TNF-α, and iNOS Genes in PBMCs Infected with Leishmania major [MRHO/IR/75/ER]
    Soheila Alinejad, Shahram Khademvatan, Shahla Amani, Negar Asadi, Khosrow Hazrati Tappeh, Elham Yousefi, Touraj Miandoabi
    Infectious Disorders - Drug Targets.2022;[Epub]     CrossRef
  • In Vitro Study of Cytotoxic Mechanisms of Alkylphospholipids and Alkyltriazoles in Acute Lymphoblastic Leukemia Models
    Larissa de Oliveira Passos Jesus, Aline Aparecida de Souza, Heron Fernandes Vieira Torquato, Vanessa Silva Gontijo, Rossimirian Pereira de Freitas, Tarsis Ferreira Gesteira, Vivien Jane Coulson-Thomas, Ricardo José Soares Torquato, Aparecida Sadae Tanaka,
    Molecules.2022; 27(23): 8633.     CrossRef
  • Anti-leishmanial physalins—Phytochemical investigation, in vitro evaluation against clinical and MIL-resistant L. tropica strains and in silico studies
    Saira Bano, Memoona Bibi, Saba Farooq, Humaira Zafar, Muniza Shaikh, Behram Khan Khoso, Sammer Yousuf, M. Iqbal Choudhary, Mohammad Shahid
    PLOS ONE.2022; 17(11): e0274543.     CrossRef
  • Leishmanicidal Activity and Ultrastructural Changes of Maslinic Acid Isolated from Hyptidendron canum
    Jéssica Adriana Jesus, Márcia Dalastra Laurenti, Matheus Lopes Silva, João Henrique Ghilardi Lago, Luiz Felipe Domingues Passero, Valeria Sülsen
    Evidence-Based Complementary and Alternative Medicine.2021; 2021: 1.     CrossRef
  • A Novel Automated Framework for QSAR Modeling of Highly Imbalanced Leishmania High-Throughput Screening Data
    Omar Casanova-Alvarez, Aliuska Morales-Helguera, Miguel Ángel Cabrera-Pérez, Reinaldo Molina-Ruiz, Christophe Molina
    Journal of Chemical Information and Modeling.2021; 61(7): 3213.     CrossRef
  • Apoptosis-Like Cell Death in Leishmania major Treated with HESA-A: An Herbal Marine Compound
    Jasem Saki, Khalil Saki, Reza Arjmand
    Jundishapur Journal of Natural Pharmaceutical Products.2021;[Epub]     CrossRef
  • Une leishmaniose cutanée réfractaire : intérêt de la miltéfosine
    C. Guerveno, K. Delavigne, A. Berry, G. Martin-Blondel, P. Delobel
    Médecine et Maladies Infectieuses.2019; 49(4): 281.     CrossRef
  • Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach
    Shaila Mehwish, Huma Khan, Ashfaq Ur Rehman, Asif Ullah Khan, Mubarak Ali Khan, Obaid Hayat, Mansoor Ahmad, Abdul Wadood, Nazif Ullah
    3 Biotech.2019;[Epub]     CrossRef
  • Antileishmanial and cytotoxic activities of ionic surfactants compared to those of miltefosine
    Lais Alonso, Éder Jeferson Souza Cardoso, Rodrigo Saar Gomes, Sebastião Antônio Mendanha, Miriam Leandro Dorta, Antonio Alonso
    Colloids and Surfaces B: Biointerfaces.2019; 183: 110421.     CrossRef
  • In vitro study of the efficacy of Solanum nigrum against Leishmania major
    Christine N. Mutoro, Johnson K. Kinyua, Joseph K. Ng'ang'a, Daniel W. Kariuki, Johnstone M. Ingonga, Christopher O. Anjili
    F1000Research.2018; 7: 1329.     CrossRef
  • The cytotoxic activity of miltefosine against Leishmania and macrophages is associated with dynamic changes in plasma membrane proteins
    Kelly Souza Fernandes, Paulo Eduardo Narcizo de Souza, Miriam Leandro Dorta, Antonio Alonso
    Biochimica et Biophysica Acta (BBA) - Biomembranes.2017; 1859(1): 1.     CrossRef
  • Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic)
    Masoud Foroutan-Rad, Khosrow Hazrati Tappeh, Shahram Khademvatan
    Journal of Evidence-Based Complementary & Alternative Medicine.2017; 22(1): 141.     CrossRef
  • Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis
    Pedro H.F. Stroppa, Luciana M.R. Antinarelli, Arturene M.L. Carmo, Jacy Gameiro, Elaine S. Coimbra, Adilson D. da Silva
    Bioorganic & Medicinal Chemistry.2017; 25(12): 3034.     CrossRef
  • Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice
    Badriah Alkathiri, Manal El-Khadragy, Dina Metwally, Ebtesam Al-Olayan, Muhammed Bakhrebah, Ahmed Abdel Moneim
    International Journal of Environmental Research and Public Health.2017; 14(12): 1592.     CrossRef
  • Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents
    María Ángeles Abengózar, Rubén Cebrián, José María Saugar, Teresa Gárate, Eva Valdivia, Manuel Martínez-Bueno, Mercedes Maqueda, Luis Rivas
    Antimicrobial Agents and Chemotherapy.2017;[Epub]     CrossRef
  • Cytotoxic Activity ofHolothuria leucospilotaExtract againstLeishmania infantum In Vitro
    Shahram Khademvatan, Alborz Eskandari, Jasem Saki, Masoud Foroutan-Rad
    Advances in Pharmacological Sciences.2016; 2016: 1.     CrossRef
  • The antifungal compound butenafine eliminates promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis
    Adriana Bezerra-Souza, Eduardo S. Yamamoto, Márcia D. Laurenti, Susan P. Ribeiro, Luiz Felipe D. Passero
    Parasitology International.2016; 65(6): 702.     CrossRef
  • New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites
    Jose A. Garcia-Salcedo, Juan D. Unciti-Broceta, Javier Valverde-Pozo, Miguel Soriano
    Frontiers in Pharmacology.2016;[Epub]     CrossRef
  • Biological Activity of Coumarin Derivatives as Anti-Leishmanial Agents
    Vineetha Mandlik, Sohan Patil, Ramanamurthy Bopanna, Sudipta Basu, Shailza Singh, Imtaiyaz Hassan
    PLOS ONE.2016; 11(10): e0164585.     CrossRef
  • Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design
    Vineetha Mandlik, Shailza Singh
    F1000Research.2016; 5: 1610.     CrossRef
  • A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum
    Paloma Tejera Nevado, Eugenia Bifeld, Katharina Höhn, Joachim Clos
    Antimicrobial Agents and Chemotherapy.2016; 60(9): 5262.     CrossRef
  • Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design
    Vineetha Mandlik, Shailza Singh
    F1000Research.2016; 5: 1610.     CrossRef
  • Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice
    Anita Masic, Ana Maria Valencia Hernandez, Sudipta Hazra, Jan Glaser, Ulrike Holzgrabe, Banasri Hazra, Uta Schurigt, Bhaskar Saha
    PLOS ONE.2015; 10(11): e0142386.     CrossRef
  • Evaluation of the effect of miltefosine on Trichomonas vaginalis
    Débora Afonso Silva Rocha, Ivone de Andrade Rosa, Wanderley de Souza, Marlene Benchimol
    Parasitology Research.2014; 113(3): 1041.     CrossRef
  • In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes
    Shahram Khademvatan, Neda Adibpour, Alborz Eskandari, Saeed Rezaee, Mahmoud Hashemitabar, Fakher Rahim
    Experimental Parasitology.2013; 135(2): 208.     CrossRef
  • Pistagremic acid a new leishmanicidal triterpene isolated from Pistacia integerrima Stewart
    Ghias Uddin, Abdur Rauf, Mohammad Arfan, Waliullah, Inamullah khan, Mumtaz Ali, Mazhar Taimur, Inaayat ur-Rehman, Samiullah
    Journal of Enzyme Inhibition and Medicinal Chemistry.2012; 27(5): 646.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains
Korean J Parasitol. 2011;49(1):17-23.   Published online March 18, 2011
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains
Korean J Parasitol. 2011;49(1):17-23.   Published online March 18, 2011
Close

Figure

  • 0
  • 1
  • 2
  • 3
Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains
Image Image Image Image
Fig. 1 The viability of L. major and L. tropica promastigotes, in the presence of various concentrations of HePC, assessed by MTT. Each point represents the means of 3 independent tests. Dotted line: L. tropica promastigotes, solid line: L. major.
Fig. 2 Number of promastigotes treated with or without miltefosine at different time points after 48 hr. Dotted line: L. major (MRHO/IR/75/ER) promastigotes and L. tropica (MHOM/IR/02/Mash10) control group, solid line: L. tropica and L. major-treated cells.
Fig. 3 Analysis of morphology in light microscopy (magnification, ×100) and flow cytometry analysis of L. major and L. tropica promastigotes following treatment with 22 µM and 11 µM HePC, respectively, at different time points after miltefosine treatment. (A) L. major 24 hr after treatment. (B) L. major 48 hr after treatment. (C) L. tropica 24 hr after treatment. (D) L. tropica 48 hr after treatment. Lower right region (LR) belongs to apoptotic cells (annexin positive) and upper left region (UL) belongs to necrotic cells (PI positive).
Fig. 4 DNA fragmentation detected with agarose gel electrophoresis of L. major (right) and L. tropica (left). C, Not treated; Lanes 12, 24, 36, and 48 hr incubation periods after treatment with miltefosine. Lane M, size marker.
Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains
Species
L. tropica (%)
L. major (%)
Group sub-G0/ G1 (M1) G0/G1 (M2) G2/M (M3) sub-G0/ G1 (M1) G0/G1 (M2) G2/M (M3) 24 hr  Control 3.2 57.7 39.1 4.1 47.3 48.6  Treated 11.5 62.7 25.8 6.5 73.3 20.2 48 hr  Control 3.0 64.9 32.1 3.9 67.0 29.1  Treated 57.1 32.2 10.7 61.2 25.1 13.7
Table 1. The cell cyclea of L. tropica and L. major after treatment with 24 μM and 32 μM miltefosine for 24 hr and 48 hr, respectively

Methods for cell-cycle analysis are described in Materials and Methods.