Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

Kyoung Ju Song1,†,‡, Hye-Jin Ahn1,2,†, Ho-Woo Nam1,2
The Korean Journal of Parasitology 2012;50(1):1-6.
Published online: March 6, 2012

1The Catholic Institute of Parasitic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.

2Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.

Corresponding author (howoo@catholic.ac.kr)

Kyoung Ju Song and Hye-Jin Ahn equally contributed as the first author.


Present Address: Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea.

• Received: October 31, 2011   • Revised: December 13, 2011   • Accepted: December 19, 2011

© 2012, Korean Society for Parasitology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 10,962 Views
  • 93 Download
  • 25 Crossref
  • 25 Scopus
next

Citations

Citations to this article as recorded by  Crossref logo
  • Identification and functional analysis of a serine protease inhibitor using machine learning strategy
    Heqian Zhang, Yaxin Wu, Yanran Zhu, Liangjun Ge, Jiaquan Huang, Zhiwei Qin
    International Journal of Biological Macromolecules.2024; 265: 130852.     CrossRef
  • Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells
    Ehsan Ahmadpour, Farhad Babaie, Tohid Kazemi, Sirous Mehrani Moghaddam, Ata Moghimi, Ramin Hosseinzadeh, Veeranoot Nissapatorn, Abdol Sattar Pagheh
    Pathogens.2023; 12(2): 253.     CrossRef
  • Modulation of STAT-1, STAT-3, and STAT-6 activities in THP-1 derived macrophages infected with two Trypanosoma cruzi strains
    Melissa Martins Oliveira, Camila Ramalho Bonturi, Bruno Ramos Salu, Maria Luiza Vilela Oliva, Renato Arruda Mortara, Cristina Mary Orikaza
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • BEWO trophoblast cells and Toxoplasma gondii infection modulate cell death mechanisms in THP-1 monocyte cells by interference in the expression of death receptor and intracellular proteins
    Andressa da Silva Castro, Mariana Bodini Angeloni, Bellisa de Freitas Barbosa, Renata Lima de Miranda, Samuel Cota Teixeira, Pâmela Mendonça Guirelli, Fernanda Chaves de Oliveira, Rafaela José da Silva, Priscila Silva Franco, Mayara Ribeiro, Iliana Claudi
    Tissue and Cell.2021; 73: 101658.     CrossRef
  • Transcriptional profiling of human macrophages during infection withBordetella pertussis
    Denisa Petráčková, Mariam R. Farman, Fabian Amman, Irena Linhartová, Ana Dienstbier, Dilip Kumar, Jakub Držmíšek, Ivo Hofacker, Maria Eugenia Rodriguez, Branislav Večerek
    RNA Biology.2020; 17(5): 731.     CrossRef
  • Secretome Analysis of Host Cells Infected with Toxoplasma gondii after Treatment of Human Epidermal Growth Factor Receptor 2/4 Inhibitors
    Hye-Jung Kim, Hye-Jin Ahn, Hyeweon Kang, Jaehui Park, Seul gi Oh, Saehae Choi, Won-Kyu Lee, Ho-Woo Nam
    The Korean Journal of Parasitology.2020; 58(3): 249.     CrossRef
  • Toxoplasma gondiiModulates the Host Cell Responses: An Overview of Apoptosis Pathways
    Nour Mammari, Mohamad Adnan Halabi, Souha Yaacoub, Hilda Chlala, Marie-Laure Dardé, Bertrand Courtioux
    BioMed Research International.2019; 2019: 1.     CrossRef
  • Mechanisms of Human Innate Immune Evasion by Toxoplasma gondii
    Tatiane S. Lima, Melissa B. Lodoen
    Frontiers in Cellular and Infection Microbiology.2019;[Epub]     CrossRef
  • Strategies Developed by Toxoplasma gondii to Survive in the Host
    Wanbo Zhu, Jingyang Li, Faustina Pappoe, Jilong Shen, Li Yu
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Identification of an interaction between calcium-dependent protein kinase 4 (EtCDPK4) and serine protease inhibitor (EtSerpin) in Eimeria tenella
    Ling Lv, Bing Huang, Qiping Zhao, Zongping Zhao, Hui Dong, Shunhai Zhu, Ting Chen, Ming Yan, Hongyu Han
    Parasites & Vectors.2018;[Epub]     CrossRef
  • Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium
    Linlu Qi, Mo Hu, Jiaqi Fu, Yanhua Liu, Mei Wu, Kaiwen Yu, Xiaoyun Liu
    PROTEOMICS.2017;[Epub]     CrossRef
  • Phosphoproteome of Toxoplasma gondii Infected Host Cells Reveals Specific Cellular Processes Predominating in Different Phases of Infection
    Hai-Xia Wei, Ai-Yuan Chen, Cheng He, Hong-Juan Peng, Xiao-Shuang Feng
    The American Journal of Tropical Medicine and Hygiene.2017; 97(1): 236.     CrossRef
  • Host-Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response
    Thaís Rigueti Brasil, Celio Geraldo Freire-de-Lima, Alexandre Morrot, Andrea Cristina Vetö Arnholdt
    Frontiers in Immunology.2017;[Epub]     CrossRef
  • Interferon-γ Protects from Staphylococcal Alpha Toxin-Induced Keratinocyte Death through Apolipoprotein L1
    Anne M. Brauweiler, Elena Goleva, Donald Y.M. Leung
    Journal of Investigative Dermatology.2016; 136(3): 658.     CrossRef
  • SERPINB3/B4 Contributes to Early Inflammation and Barrier Dysfunction in an Experimental Murine Model of Atopic Dermatitis
    Umasundari Sivaprasad, Kayla G. Kinker, Mark B. Ericksen, Mark Lindsey, Aaron M. Gibson, Stacey A. Bass, Nicolas S. Hershey, Jingyuan Deng, Mario Medvedovic, Gurjit K. Khurana Hershey
    Journal of Investigative Dermatology.2015; 135(1): 160.     CrossRef
  • Trophoblast-macrophage crosstalk on human extravillous under Toxoplasma gondii infection
    P.M. Guirelli, M.B. Angeloni, B.F. Barbosa, A.O. Gomes, A.S. Castro, P.S. Franco, R.J. Silva, J.G. Oliveira, O.A. Martins-Filho, J.R. Mineo, F. Ietta, E.A. Ferro
    Placenta.2015; 36(10): 1106.     CrossRef
  • Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17–92-Bim pathway in macrophages
    Yihong Cai, He Chen, Xuwei Mo, Yuanyuan Tang, Xiucai Xu, Aimei Zhang, Zhaorong Lun, Fangli Lu, Yong Wang, Jilong Shen
    Cellular Signalling.2014; 26(6): 1204.     CrossRef
  • The role of STAT-6 as a key transcription regulator in HeLa cell death induced by IFN-γ/TNF-α co-immobilized on nanoparticles
    Zhibin Li, Yan-Qing Guan, Jun-Ming Liu
    Biomaterials.2014; 35(18): 5016.     CrossRef
  • Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes
    Sílvia Gomes, Patrícia I. Marques, Rune Matthiesen, Susana Seixas, Charaf Benarafa
    PLoS ONE.2014; 9(8): e104935.     CrossRef
  • Risk factors associated with seroprevalence of Neospora caninum in dogs from urban and rural areas of milk and coffee production in Minas Gerais state, Brazil
    C. I. NOGUEIRA, L. P. MESQUITA, C. C. ABREU, K. Y. R. NAKAGAKI, J. N. SEIXAS, P. S. BEZERRA, C. M. B. M. ROCHA, A. M. GUIMARAES, A. P. PECONICK, M. S. VARASCHIN
    Epidemiology and Infection.2013; 141(11): 2286.     CrossRef
  • In-depth proteomic analysis of the human cerumen—A potential novel diagnostically relevant biofluid
    Martin Andreas Feig, Elke Hammer, Uwe Völker, Nico Jehmlich
    Journal of Proteomics.2013; 83: 119.     CrossRef
  • Serpins, Immunity and Autoimmunity: Old Molecules, New Functions
    Mariele Gatto, Luca Iaccarino, Anna Ghirardello, Nicola Bassi, Patrizia Pontisso, Leonardo Punzi, Yehuda Shoenfeld, Andrea Doria
    Clinical Reviews in Allergy & Immunology.2013; 45(2): 267.     CrossRef
  • STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage
    Yihong Cai, He Chen, Lei Jin, Yibo You, Jilong Shen
    Parasites & Vectors.2013;[Epub]     CrossRef
  • Differential apoptosis in BeWo cells after infection with highly (RH) or moderately (ME49) virulent strains of Toxoplasma gondii is related to the cytokine profile secreted, the death receptor Fas expression and phosphorylated ERK1/2 expression
    M.B. Angeloni, P.M. Guirelli, P.S. Franco, B.F. Barbosa, A.O. Gomes, A.S. Castro, N.M. Silva, O.A. Martins-Filho, T.W.P. Mineo, D.A.O. Silva, J.R. Mineo, E.A.V. Ferro
    Placenta.2013; 34(11): 973.     CrossRef
  • Two novel squamous cell carcinoma antigen-derived HLA-A*0201-binding peptides induce in vitro and in vivo CD8+ cytotoxic T lymphocyte responses
    ZHI-LIANG DUAN, ZHI-BIN WANG, JIANG-LONG GUO, WEN-QUAN LIU, JUN HU, JING LI, SI-NA WANG, QIANG LI, JIN-SHENG WEN
    International Journal of Oncology.2013; 42(4): 1482.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii
Korean J Parasitol. 2012;50(1):1-6.   Published online March 6, 2012
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii
Korean J Parasitol. 2012;50(1):1-6.   Published online March 6, 2012
Close

Figure

  • 0
  • 1
  • 2
  • 3
Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii
Image Image Image Image
Fig. 1 Expression of SERPIN B3 and B4 in various host cells. Expression of mRNA of SERPIN B4 and B4 in T. gondii infected or uninfected host cells (A). HeLa (cervix adenocarcinoma, epithelial), A549 (lung carcinoma, epithelial), Jurkat T (acute T cell lymphoma, T lymphocyte, lymphoblast), U937 (histiocytic lymphoma, histocyte, monocyte), THP-1 (peripheral blood, acute monocytic leukemia or macrophage) were tested. RT-PCR (B) and western blot (C) of induced SERPIN B3 and B4 in macrophage-differentiated THP-1 cells by time course. SCCA1/2 indicates SERIPN B3/B4 detectable antibody.
Fig. 2 Inhibitory relationship between SERPIN B3 or B4 and STAT6. Inhibitory effects of various si-SERPIN B3 or B4 RNAs or si-STAT6 in transcriptional level of SERPIN B 3 and B4 genes (A). Inhibitory effects of si-STAT6 and si-SERPIN B3/B4 mix in m-RNA level (B) and protein level of SERPIN B3 and B4 (C). Blank bar indicates control host cells, black bar by T. gondii infection only, dark grey bar with siSTAT6 under T. gondii infection, and bright grey bar with siSERPIN B3/B4 under T. gondii infection, respectively.
Fig. 3 Anti-apoptotic effects of SERPIN B3/B4 and T. gondii infection in macrophages after induction of apoptosis by staurosporine. The transcriptional level of SERPIN B3 and B4 was affected by the concentration of staurosporine (A). DNA fragmentation (B), activation of caspase-3 and cleavage of PARP (B) were measured in macrophages. SCCA1/2 indicates SERIPN B3/B4 detectable antibody and β-actin was used as control.
Fig. 4 Effects of anti-apoptosis in HeLa cells by expression of SERPIN B3 and B4. Over-expression of SERPIN B3 or B4 in macrophages was confirmed in fluorescent photographs (A) of which RH(+) indicates T. gondii infection. Activation of caspase-3, cleavage of PARP, and SCCA1/2 expression in untransfected HeLa cells (B) and in transfected HeLa cells (C). pDsSERPIN B3/4 indicates pDsRed-SERPIN B3 and pDsRed-SERPIN B4 co-transfected HeLa cells.
Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii
SERPINB3-1 (RNA) -AUA UCC ACC AUU CCC AUG GUU CUC A (RNA) -UGA GAA CCA UGG GAA UGG UGG AUA A SERPINB3-2 (RNA) -UUA UUA AAU UUC UUC UCC CAC UGC C (RNA) -GGC AGU GGG AGA AGA AAU UUA AUA A SERPINB3-3 (RNA) -UGG ACU UGU AUG UAU UCU UGU UUG G (RNA) -CCA AAC AAG AAU ACA UAC AAG UCC A SERPINB4-1 (RNA) -AAA UUU AUU CUC CCA CUG CCC UUU G (RNA) -CAA AGG GCA GUG GGA GAA UAA AUU U SERPINB4-2 (RNA) -AGA UUU GUA UGU AUU CUU GUU UGG C (RNA) -GCC AAA CAA GAA UAC AUA CAA AUC U SERPINB4-3 (RNA) -AUC GAC ACA UGU CUC UCU CAU AUU C (RNA) -GAA UAG GAG AGA GAC AUG UGU CGA U
Table 1. The si-RNAs designed and tested for inhibition of SERPIN B3 and B4