Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

The Korean Journal of Parasitology 2015;53(4):403-411.
Published online: August 25, 2015

1Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea

2Department of Parasitology, College of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China

3Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China

4Department of Medical Research, Yangon, Myanmar

5Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea

6Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea

Corresponding author (ethan@kangwon.ac.kr)
• Received: February 28, 2015   • Revised: July 23, 2015   • Accepted: July 23, 2015

© 2015, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 12,023 Views
  • 153 Download
  • 16 Web of Science
  • 15 Crossref
  • 17 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions
    Daniel Kepple, Kareen Pestana, Junya Tomida, Abnet Abebe, Lemu Golassa, Eugenia Lo
    Microorganisms.2020; 9(1): 15.     CrossRef
  • Epitope-Based Vaccine Designing of Nocardia asteroides Targeting the Virulence Factor Mce-Family Protein by Immunoinformatics Approach
    Prasanta Patra, Niladri Mondal, Bidhan Chandra Patra, Manojit Bhattacharya
    International Journal of Peptide Research and Therapeutics.2020; 26(2): 1165.     CrossRef
  • Plasmodium vivax Reticulocyte Binding Proteins for invasion into reticulocytes
    Li‐Jin Chan, Melanie H. Dietrich, Wang Nguitragool, Wai‐Hong Tham
    Cellular Microbiology.2020;[Epub]     CrossRef
  • From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax
    Manuel Alfonso Patarroyo, Gabriela Arévalo-Pinzón, Darwin A. Moreno-Pérez
    Expert Review of Vaccines.2020; 19(2): 195.     CrossRef
  • Inferring Plasmodium vivax protein biology by using omics data
    D.A. Moreno-Pérez, M.A. Patarroyo
    Journal of Proteomics.2020; 218: 103719.     CrossRef
  • Prediction of B cell and T‐helper cell epitopes candidates of bovine leukaemia virus (BLV) by in silico approach
    Negar Hooshmand, Jamal Fayazi, Saleh Tabatabaei, Nader Ghaleh Golab Behbahan
    Veterinary Medicine and Science.2020; 6(4): 730.     CrossRef
  • Serodiagnostic antigens of Clonorchis sinensis identified and evaluated by high-throughput proteogenomics
    Pyo Yun Cho, Ji-Yun Lee, Tae Im Kim, Jin-Ho Song, Sung-Jong Hong, Won Gi Yoo, Takafumi Tsuboi, Kwon-Soo Ha, Jae-Wan Jung, Satoru Takeo, Eun-Taek Han, Banchob Sripa, Sung-Tae Hong, Jong-Yil Chai, Ho-Woo Nam, Jhang Ho Pak, Tong-Soo Kim, Krystyna Cwiklinski
    PLOS Neglected Tropical Diseases.2020; 14(12): e0008998.     CrossRef
  • Contribution ofPlasmodiumimmunomics: potential impact for serological testing and surveillance of malaria
    Kokouvi Kassegne, Eniola Michael Abe, Yan-Bing Cui, Shen-Bo Chen, Bin Xu, Wang-Ping Deng, Hai-Mo Shen, Yue Wang, Jun-Hu Chen, Xiao-Nong Zhou
    Expert Review of Proteomics.2019; 16(2): 117.     CrossRef
  • Identification and Immunological Characterization of the Ligand Domain of Plasmodium vivax Reticulocyte Binding Protein 1a
    Francis B Ntumngia, Richard Thomson-Luque, Sandra Galusic, Gabriel Frato, Sarah Frischmann, David S Peabody, Bryce Chackerian, Marcelo U Ferreira, Christopher L King, John H Adams
    The Journal of Infectious Diseases.2018; 218(7): 1110.     CrossRef
  • Plasmodium vivax vaccine research – we’ve only just begun
    Wai-Hong Tham, James G. Beeson, Julian C. Rayner
    International Journal for Parasitology.2017; 47(2-3): 111.     CrossRef
  • What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates?
    Carolina López, Yoelis Yepes-Pérez, Natalia Hincapié-Escobar, Diana Díaz-Arévalo, Manuel A. Patarroyo
    Frontiers in Immunology.2017;[Epub]     CrossRef
  • Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain
    Jin-Hee Han, Seong-Kyun Lee, Bo Wang, Fauzi Muh, Myat Htut Nyunt, Sunghun Na, Kwon-Soo Ha, Seok-Ho Hong, Won Sun Park, Jetsumon Sattabongkot, Takafumi Tsuboi, Eun-Taek Han
    Scientific Reports.2016;[Epub]     CrossRef
  • Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status
    Yang Cheng, Feng Lu, Bo Wang, Jian Li, Jin-Hee Han, Daisuke Ito, Deok-Hoon Kong, Lubin Jiang, Jian Wu, Kwon-Soo Ha, Eizo Takashima, Jetsumon Sattabongkot, Jun Cao, Myat Htut Nyunt, Myat Phone Kyaw, Sanjay A. Desai, Louis H. Miller, Takafumi Tsuboi, Eun-Ta
    Scientific Reports.2016;[Epub]     CrossRef
  • Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children
    Camila T. França, Wen-Qiang He, Jakub Gruszczyk, Nicholas T. Y. Lim, Enmoore Lin, Benson Kiniboro, Peter M. Siba, Wai-Hong Tham, Ivo Mueller, Henk D. F. H. Schallig
    PLOS Neglected Tropical Diseases.2016; 10(9): e0005014.     CrossRef
  • Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax Reticulocyte Binding Proteins
    Jenni Hietanen, Anongruk Chim-ong, Thanprakorn Chiramanewong, Jakub Gruszczyk, Wanlapa Roobsoong, Wai-Hong Tham, Jetsumon Sattabongkot, Wang Nguitragool, J. H. Adams
    Infection and Immunity.2016; 84(3): 677.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening
Korean J Parasitol. 2015;53(4):403-411.   Published online August 25, 2015
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening
Korean J Parasitol. 2015;53(4):403-411.   Published online August 25, 2015
Close

Figure

  • 0
  • 1
Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening
Image Image
Fig. 1. Schematic protein features and secondary structures of the PvRBP family. The PvRBP family based on amino acid (aa) length. Black bar denotes fragment for recombinant protein expression, with the order of fragment number from the N-terminal region. RDG, arginyl-glycyl-aspartic acid a cell adhesion motif.
Fig. 2. Recombinant protein expressions of PvRBP family fragments by Western blot analysis. All the PvRBP recombinant proteins were expressed in the supernatant as the soluble fraction with variable expression level in the wheat germ cell-free expression system. The expression level of each PvRBP protein was detected by Western blot analysis probed with anti-His tag. kDa, kilodalton; T, total crude protein; S, supernatant soluble fraction.
Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening
Name Gene ID (PVX_) Chromosome No. Length (aa) MW (kDa) SP TM Expression stage Note Reference
PvRBP1a 098585 7 2,833 326.2 Y Y Schizont Full length [19,23]
PvRBP1b 098582 7 2,608 303.3 Y N Unknown Full length [14]
PvRBP1 like-partial 125738 NA 785 90.9 N Y Unknown Partial length [14]
PvRBP2a 121920 14 2,487 286.6 Y N Schizont Full length [14,21]
PvRBP2b 094255 8 2,806 325.5 Y N Schizont Full length [14,21]
PvRBP2c 090325 5 2,824 326.4 Y Y Schizont Full length [19,23]
PvRBP2 like-partial A 090330 5 623 72.8 Y N Schizont Partial length [14,21]
PvRBP2 like-partial B 101590 14 640 74.2 Y N Unknown Partial length [14,21]
PvRBP2 like-homologue B 116930 12 1,060 123.9 Y N Unknown Full length [14,21]
PvRBP2d 101585 14 2,829 329.1 Y Y Null Pseudogene [21]
PvRBP3 101495 14 2,798 323.1 N Y Null Pseudogene [21]
Fragment (PVX_) Forward primer (5ʹ→3ʹ) Reverse primer (5ʹ→3ʹ) Position (aa) Length (aa) pI MW (kDa)
098585-1 CAAAACAGCATGCAGCAGTAC TTCGTCTACTTCCCTTTTGATGT 804-1,073 270 5.1 34.4
098585-2 GAAATGAATTCTAAAAAGAGCGCT TTCTTCTTTGTTTTCTGGGTTCA 2,619-2,822 204 4.2 25.6
098582-1 GTAGATTTAAATCGAGGGAAAAACAC GCAGCTGGATTGCTTCAAA 15-289 273 6.7 34.7
098582-2 GATAAGTTGAAAGCAGAACTAGGAAGT GATCTGTTGTGTTTGCTCTTCC 996-1,254 259 5.6 33.8
125738-1 CTAGAAAATGACAAAAGGAAAAAGAGC AATGTCTGTTTGAGGGGGTAGTC 476-623 148 4.6 20.0
125738-2 AAAAATGACAGAAACGATCAAAAAT ATCTTTTACATTACGTTTTGAACCATT 630-772 143 5.4 18.9
121920-1 TCAAGCAAAGAAAGCAATCG TATTTGATTCTTTGGTGTGAAGAGAA 20-145 126 9.7 17.7
121920-2 AGCGAAAAAATAGATAAAAATTTGGA CATATCGTCGACTAATTCTTTTAAGTC 453-713 261 5.2 33.3
121920-3 ACGGAAGCTAAAACACTCAGG TGTGTCGTAATTCTTATCATCCGT 1,789-2,049 261 5.8 32.9
121920-4 GCTAAGGAAAACTCCATTAATATGC TTCTTCCTTATCTTGAAGATTTCCA 2,330-2,474 145 7.4 19.0
094255-1 CAAGAAGCTTCCTACCAAAATGC TGCAATATTCACTTTCTTAATGGAGT 728-965 238 4.7 30.7
094255-2 GATACCCAAGAGAACGATACAGAC TTCAGAATAATCGCTATTGTCGAA 2,673-2,806 134 4 18.2
090325-1 AGGAATGGTCAACACAAATACAAC TACAATTTCAGGGGCCTCTG 47-171 125 9.7 18.0
090325-2 CTAAAAGCAAGCTCGAACGATC GTATTTATCAGCATTTGATTTCATTTC 2,115-2,314 200 5 25.7
090325-3 GCAAAAGTTGAGCCTGAAGC ATCTTCTTCATTAAAGCAAACTTCG 2,652-2,824 173 3.9 22.3
090330-1 AGGGATGATCAAAACGGACA TGAATTTGGAACACTATGCAATTC 47-145 99 8.4 14.4
090330-2 GAAAATCCAGAACACTATAAAAATAAGAGA AATTTCATCTATTACGAAATCTGCC 242-370 129 6.8 18.5
101590-1 AAGGATGTCAATCGAAACAAACC ATGCAATTTTTTATTATCATCTTCCAT 22-145 124 7.5 17.2
116930-1 TTGCACAATTCGACCTCC AACCATGCTGCCTTCGTAC 359-477 119 6.3 16.6
116930-2 GATAACATCAAGAGGAGGAACGC CAGTTTGAAATTTTTATCGATGTTGT 603-736 134 9.7 19.4
Antigen (PVX_) No. of patients samples (n)
95% Cib (%) MFIc No. of healthy samples (n)
95% CI (%) MFI P-valuee Features/Structures
Posit. Neg. Total (%)a Posit. Neg. Total (%)d
098585-1 10 6 16 (62.5) 38.6-81.5 6,429 0 8 8 (100.0) 67.6-100.0 3,139 0.0013 Repeat sequence
098585-2 8 8 16 (50.0) 28.0-72.0 5,480 0 8 8 (100.0) 67.6-100.0 2,943 0.0016 C-terminal
098582-1 6 10 16 (37.5) 18.5-61.4 5,806 0 8 8 (100.0) 67.6-100.0 3,275 0.0011 N-terminal
098582-2 10 6 16 (62.5) 38.6-81.5 6,566 0 8 8 (100.0) 67.6-100.0 3,181 0.0004 Coiled coil
125738-1 11 5 16 (68.8) 44.4-85.8 9,242 0 8 8 (100.0) 67.6-100.0 3,970 0.0002 Coiled coil
125738-2 11 5 16 (68.8) 44.4-85.8 10,280 0 8 8 (100.0) 67.6-100.0 3,741 0.0003 C-terminal
121920-1 11 5 16 (68.8) 44.4-85.8 11,283 0 8 8 (100.0) 67.6-100.0 4,628 0.0013 N-terminal
121920-2 11 5 16 (68.8) 44.4-85.8 9,232 0 8 8 (100.0) 67.6-100.0 3,863 0.0007 Low complexity
121920-3 11 5 16 (68.8) 44.4-85.8 8,821 0 8 8 (100.0) 67.6-100.0 3,010 0.0005 Repeat sequence
121920-4 6 10 16 (37.5) 18.5-61.4 6,947 0 8 8 (100.0) 67.6-100.0 3,710 0.0053 C-terminal
094255-1 12 4 16 (75.0) 50.5-89.8 13,325 0 8 8 (100.0) 67.6-100.0 5,163 0.0007 Repeat sequence
094255-2 8 8 16 (62.5) 28.0-72.0 6,307 0 8 8 (100.0) 67.6-100.0 3,394 0.0011 C-terminal
090325-1 14 2 16 (87.5) 64.0-96.5 17,597 0 8 8 (100.0) 67.6-100.0 6,257 0.0002 N-terminal
090325-2 9 7 16 (56.3) 33.2-76.9 19,179 0 8 8 (100.0) 67.6-100.0 7,226 0.0004 Short coiled coil
090325-3 11 5 16 (68.8) 44.4-85.8 18,615 0 8 8 (100.0) 67.6-100.0 6,095 0.0007 C-terminal
090330-1 13 3 16 (81.3) 57.0-93.0 12,413 0 8 8 (100.0) 67.6-100.0 4,455 0.0002 N-terminal
090330-2 7 9 16 (43.8) 23.1-66.8 12,149 0 8 8 (100.0) 67.6-100.0 6,072 0.0030 Short coiled coil
101590-1 9 7 16 (56.3) 33.1-76.9 7,223 0 8 8 (100.0) 67.6-100.0 3,299 0.0005 N-terminal
116930-1 12 4 16 (75.0) 50.5-89.8 12,407 0 8 8 (100.0) 67.6-100.0 4,522 0.0004 Short coiled coil
116930-2 14 2 16 (87.5) 64.0-96.5 11,332 0 8 8 (100.0) 67.6-100.0 3,346 0.0005 Repeat sequence
PvMSP1-19 4 0 4 (100.0) 51.0-100.0 9,987 0 8 8 (100.0) 67.6-100.0 1,887 0.0286
Table 1. General information of Plasmodium vivax reticulocyte binding like protein (PvRBP)

aa, amino acid; MW, molecular weight; kDa, kilodalton; SP, signal peptide; TM, transmembrane domain; NA, not assigned.

Table 2. Primer sequences for recombinant PvRBP family protein expressions

pI, isoelectric point.

Table 3. Total IgG prevalence of each recombinant PvRBP protein including predicted B-cell epitope domain

Sensitivity, percentage of positives in patient samples.

CI, confidence intervals.

MFI, mean fluorescence intensity.

Specificity, percentage of negatives in healthy samples.

Differences in the total IgG prevalence for each antigen between patients and healthy individuals were calculated with Mann-Whitney U test. P<0.05 considered as statistically significant.