Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

The Korean Journal of Parasitology 2016;54(2):123-132.
Published online: April 30, 2016

1Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea

2Department of Biomedical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea

*Corresponding author (jsryu@hanyang.ac.kr)
• Received: March 10, 2016   • Revised: March 30, 2016   • Accepted: April 5, 2016

© 2016, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 13,933 Views
  • 178 Download
  • 22 Web of Science
  • 20 Crossref
  • 22 Scopus
next

Citations

Citations to this article as recorded by  Crossref logo
  • Immunomodulatory roles of autophagic flux and IFIT in human ectocervical cells upon Trichomonas vaginalis infection
    Ching-Chun Liu, Lichieh Julie Chu, Yuan-Ming Yeh, Hsin-Chung Lin, Lih-Chyang Chen, Ching-Yun Huang, Shu-Fang Chiu, Fang-Wen Cheng, Wei-Ning Lin, Kuo-Yang Huang
    International Immunopharmacology.2025; 155: 114643.     CrossRef
  • Intrinsic and extrinsic factors causing hyperplasia of the prostate
    Yuki Kyoda, Kosuke Shibamori, Tetsuya Shindo, Takeshi Maehana, Kohei Hashimoto, Ko Kobayashi, Toshiaki Tanaka, Fumimasa Fukuta, Naoya Masumori
    International Journal of Urology.2024; 31(7): 705.     CrossRef
  • P. gingivalis in oral-prostate axis exacerbates benign prostatic hyperplasia via IL-6/IL-6R pathway
    Shuang-Ying Wang, Yi Cai, Xiao Hu, Fei Li, Xin-Hang Qian, Ling-Yun Xia, Bo Gao, Lan Wu, Wen-Zhong Xie, Jia-Min Gu, Tong Deng, Cong Zhu, Hai-Chang Jia, Wan-Qi Peng, Jiao Huang, Cheng Fang, Xian-Tao Zeng
    Military Medical Research.2024;[Epub]     CrossRef
  • The correlation between Trichomonas vaginalis infection and reproductive system cancer: a systematic review and meta-analysis
    Zhenchao Zhang, Dongxian Li, Yuhua Li, Rui Zhang, Xianghuan Xie, Yi Yao, Linfei Zhao, Xiaowei Tian, Zhenke Yang, Shuai Wang, Xuejing Yue, Xuefang Mei
    Infectious Agents and Cancer.2023;[Epub]     CrossRef
  • Inflammatory response to Trichomonas vaginalis in the pathogenesis of prostatitis and benign prostatic hyperplasia
    Ik-Hwan Han, Jung-Hyun Kim, Jae-Sook Ryu
    Parasites, Hosts and Diseases.2023; 61(1): 2.     CrossRef
  • Trichomoniasis
    Olivia T. Van Gerwen, Skye A. Opsteen, Keonte J. Graves, Christina A. Muzny
    Infectious Disease Clinics of North America.2023; 37(2): 245.     CrossRef
  • Inflammatory responses during trichomoniasis: The role of Toll‐like receptors and inflammasomes
    Abdollah Jafarzadeh, Maryam Nemati, Ehsan Salarkia, Sonal Yadav, Najmeh Aminizadeh, Sara Jafarzadeh, Manisha Yadav
    Parasite Immunology.2023;[Epub]     CrossRef
  • IL-6 Signaling Link between Inflammatory Tumor Microenvironment and Prostatic Tumorigenesis
    Cosmin-Victor Ene, Ilinca Nicolae, Bogdan Geavlete, Petrisor Geavlete, Corina Daniela Ene, Yun Ping Lim
    Analytical Cellular Pathology.2022; 2022: 1.     CrossRef
  • Ellagic acid improves benign prostate hyperplasia by regulating androgen signaling and STAT3
    Woo Yong Park, Gahee Song, Ja Yeon Park, Kwang Seok Ahn, Hyun Jeong Kwak, Jinbong Park, Jun Hee Lee, Jae-Young Um
    Cell Death & Disease.2022;[Epub]     CrossRef
  • Association between trichomoniasis and prostate and bladder diseases: a population-based case–control study
    Hung-Yi Yang, Ruei-Yu Su, Chi-Hsiang Chung, Kuo-Yang Huang, Hsin-An Lin, Jui-Yang Wang, Chien-Chou Chen, Wu-Chien Chien, Hsin-Chung Lin
    Scientific Reports.2022;[Epub]     CrossRef
  • Increased diagnostic yield of routine multiplex PCR compared to clinician requested testing for detection of Trichomonas vaginalis
    Brooke Webb, Andrea Crampton, Michelle J. Francis, John Hamblin, Tony M. Korman, Maryza Graham
    Pathology.2021; 53(2): 257.     CrossRef
  • Development of a convenient detection method for Trichomonas vaginalis based on loop-mediated isothermal amplification targeting adhesion protein 65
    Yuhua Li, Shuai Wang, Haoran Li, Xiaoxiao Song, Hao Zhang, Yujuan Duan, Chengyang Luo, Bingli Wang, Sifan Ji, Qing Xie, Zhenchao Zhang
    BMC Infectious Diseases.2020;[Epub]     CrossRef
  • Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells
    Ik‐Hwan Han, Jung‐Hyun Kim, Ki‐Seok Jang, Jae‐Sook Ryu
    The Prostate.2019; 79(10): 1133.     CrossRef
  • Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro
    Mabel Schulz, Fabiola Zambrano, Hans-Christian Schuppe, Florian Wagenlehner, Anja Taubert, Ulrich Gaertner, Rául Sánchez, Carlos Hermosilla
    Systems Biology in Reproductive Medicine.2019; 65(5): 357.     CrossRef
  • Synopsis: Special Issue on “Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigmEpistemology of the origin of cancer”
    Björn L.D.M. Brücher, Ijaz S. Jamall, Obul R. Bandapalli
    4open.2019; 2: 28.     CrossRef
  • Cancer-Associated Fibroblasts Produce Netrin-1 to Control Cancer Cell Plasticity
    Pei-Ju Sung, Nicolas Rama, Jeromine Imbach, Stephany Fiore, Benjamin Ducarouge, David Neves, Huei-Wen Chen, David Bernard, Pan-Chyr Yang, Agnès Bernet, Stephane Depil, Patrick Mehlen
    Cancer Research.2019; 79(14): 3651.     CrossRef
  • Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways
    Jing Wang, Moussa Ide Nasser, Salah Adlat, Ming Ming Jiang, Nan Jiang, Li Gao
    Molecules.2018; 23(12): 3298.     CrossRef
  • Proliferation of prostate epithelia induced by IL‐6 from stroma reacted with Trichomonas vaginalis
    J.‐H. Kim, I.‐H. Han, Y.‐S. Kim, C.‐S. Noh, J.‐S. Ryu
    Parasite Immunology.2018;[Epub]     CrossRef
  • Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated WithTrichomonas vaginalisvia Crosstalk With Mast Cell
    Jung-Hyun Kim, Sang-Su Kim, Ik-Hwan Han, Seobo Sim, Myoung-Hee Ahn, Jae-Sook Ryu
    The Prostate.2016; 76(15): 1431.     CrossRef
  • Signalling pathways associated with IL‐6 production and epithelial–mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis
    I. H. Han, J. H. Kim, S. S. Kim, M. H. Ahn, J. S. Ryu
    Parasite Immunology.2016; 38(11): 678.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis
Korean J Parasitol. 2016;54(2):123-132.   Published online April 30, 2016
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis
Korean J Parasitol. 2016;54(2):123-132.   Published online April 30, 2016
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis
Image Image Image Image Image Image
Fig. 1. Production of cytokines by benign prostatic hyperplasia epithelial cells (BPH-1) infected with T. vaginalis. Production of inflammatory cytokines CXCL8 (A), CCL2 (B), IL-1β (C), and IL-6 (D) by BPH-1 cells incubated with increasing numbers of live trichomonads for 3 hr, 6 hr, and 12 hr, respectively, was measured using ELISA. C, BPH-1 cell alone. *P<0.05 vs untreated BPH-1 cells.
Fig. 2. PCR analysis of inflammatory cytokine mRNA levels in BPH-1 cells infected with T. vaginalis (A-D: CXCL8, CCL2, IL-1β, and IL-6). BPH-1 cells (2×105) were incubated with increasing numbers of live trichomonads (BPH-1: T. vaginalis=1:1, 1:5, and 1:10), for 45 min (CXCL8, CCL2, and IL-6) or 30 min (IL-1β). C, BPH-1 cells alone.
Fig. 3. ROS production by BPH-1 cells infected with T. vaginalis. Hydrogen peroxide (H2O2) production was measured by a spectrofluorometer using DCF-DA. (A) ROS production by BPH-1 cells infected with T. vaginalis for 5 to 60 min was detected by a spectrofluorometer. DPI was used as a ROS inhibitor. (B) mRNA levels of NOX2 were determined by RT-PCR. Numerical values of PCR band densities are shown below the graph. *P<0.05 vs untreated BPH-1 cells. †P<0.05 versus BPH-1 cells treated with T. vaginalis.
Fig. 4. Levels of signaling molecules in BPH-1 cells incubated with or without live T. vaginalis for 3 hr were determined by western blotting. Signaling molecules activation peaked at the 1:10 ratio of cells to trichomonads. C, BPH-1 cells alone.
Fig. 5. BPH-1 cells were pretreated with inhibitors of signaling molecules before treatment with T. vaginalis. Production of cytokines was measured in supernatant of cells pretreated with inhibitors of ROS, MAPK, NF-κB, JAK2, and PI3K, and with anti-TLR4 antibody. Cytokine production by BPH-1 incubated with T. vaginalis was significantly increased compared with that of BPH-1 alone (*P<0.05). †P<0.05 vs BPH-1 cells treated with T. vaginalis.
Fig. 6. Migration of mast cells (A, HMC-1 cells) and monocytes (B, THP-1 cells) induced by conditioned medium of BPH-1 cells infected with T. vaginalis. RPMI 1640 medium was used as negative control (C), and stem cell factor (SCF) and CCL2 were used as positive controls for mast cells or monocytes, respectively. To identify the effect of cytokines on the migration of mast cells and monocytes, BPH-1 cells were pretreated with BAY11-7082 before incubation with T. vaginalis, and then the culture supernatant was used for migration assay. *P<0.05 vs RPMI 1640 medium. **P<0.05 vs CM. †P<0.05 vs TCM (or CM).
Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis