Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

The Korean Journal of Parasitology 2018;56(2):135-145.
Published online: April 30, 2018

1Institute of Immunology, Taishan Medical College, Tai’an 271-000, Shandong, China

2Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea

3Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524-001, Guangdong, China

*Corresponding authors (yhalee@cnu.ac.kr; gcha@cnu.ac.kr)

These authors contributed equally to this paper.

• Received: June 20, 2017   • Revised: March 13, 2018   • Accepted: March 20, 2018

Copyright © 2018 by The Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 11,280 Views
  • 182 Download
  • 12 Web of Science
  • 12 Crossref
  • 11 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • PTEN regulation in virus-associated cancers
    Shaian Tavakolian, Zahra Shokati Eshkiki, Abolfazl Akbari, Ebrahim Faghihloo, Seidamir Pasha Tabaeian
    Pathology - Research and Practice.2025; 266: 155749.     CrossRef
  • MjTX-II, a Lys49-PLA2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation
    Samuel Cota Teixeira, Thales Alves de Melo Fernandes, Guilherme de Souza, Alessandra Monteiro Rosini, Aryani Felixa Fajardo Martínez, Angelica Oliveira Gomes, Rosiane Nascimento Alves, Daiana Silva Lopes, Maria Vitoria da Silva, Emidio Beraldo-Neto, Patrí
    Chemico-Biological Interactions.2025; 409: 111417.     CrossRef
  • Echinococcus multilocularis protoscoleces enhance glycolysis to promote M2 Macrophages through PI3K/Akt/mTOR Signaling Pathway
    Tao Zhang, Yaogang Zhang, Zihan Yang, Yuan Jiang, Li Sun, Dengliang Huang, Meiyuan Tian, Yinhong Shen, Jun Deng, Jing Hou, Yanyan Ma
    Pathogens and Global Health.2023; 117(4): 409.     CrossRef
  • The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences
    Ahmed S. Doghish, Mohamed A. Ali, Mahmoud A. Elrebehy, Hend H. Mohamed, Reda Mansour, Aml Ghanem, Ahmed Hassan, Mohammed S. Elballal, Ola Elazazy, Ahmed E. Elesawy, Sherif S. Abdel Mageed, Yara A. Nassar, Osama A. Mohammed, Ahmed I. Abulsoud
    Pathology - Research and Practice.2023; 250: 154790.     CrossRef
  • Mammalian Target of Rapamycin Inhibitor Rapamycin Alleviates 7-Ketocholesterol Induced Inflammatory Responses and Vascular Endothelial Growth Factor Elevation by Regulating MAPK Pathway in Human Retinal Pigment Epithelium Cells
    Lin Yang, Peng Yu, Mei Chen, Bo Lei
    Journal of Ocular Pharmacology and Therapeutics.2022; 38(2): 189.     CrossRef
  • The host mTOR pathway and parasitic diseases pathogenesis
    Sajad Rashidi, Reza Mansouri, Mohammad Ali-Hassanzadeh, Zahra Mojtahedi, Reza Shafiei, Amir Savardashtaki, Nasrin Hamidizadeh, Mohammadreza Karimazar, Paul Nguewa, Raúl Manzano-Román
    Parasitology Research.2021; 120(4): 1151.     CrossRef
  • Upregulation of PEDF Predicts a Poor Prognosis and Promotes Esophageal Squamous Cell Carcinoma Progression by Modulating the MAPK/ERK Signaling Pathway
    Zui Chen, Di Che, Xiaoqiong Gu, Jiamin Lin, Jing Deng, Ping Jiang, Kaixiong Xu, Banglao Xu, Ting Zhang
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Modulation of the mTOR pathway plays a central role in dendritic cell functions after Echinococcus granulosus antigen recognition
    Christian Rodriguez Rodrigues, María Celeste Nicolao, Maia Chop, Natalia Plá, Mora Massaro, Julia Loos, Andrea C. Cumino
    Scientific Reports.2021;[Epub]     CrossRef
  • Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway
    Zhao Gao, Qiang Li, Yunda Zhang, Xiaohong Gao, Haiyan Li, Zhigang Yuan
    BMC Ophthalmology.2020;[Epub]     CrossRef
  • H3 relaxin protects against calcium oxalate crystal‐induced renal inflammatory pyroptosis
    Jiannan Liu, Kelaier Yang, Yinshan Jin, Yadong Liu, Yaodong Chen, Xiaohui Zhang, Shiliang Yu, Erlin Song, Song Chen, Jingbo Zhang, Guanhua Jing, Ruihua An
    Cell Proliferation.2020;[Epub]     CrossRef
  • Dipenyleneiodonium Induces Growth Inhibition of Toxoplasma gondii through ROS Induction in ARPE-19 Cells
    Pu Reum Sun, Fei Fei Gao, Hei Gwon Choi, Wei Zhou, Jae-Min Yuk, Jaeyul Kwon, Young-Ha Lee, Guang-Ho Cha
    The Korean Journal of Parasitology.2019; 57(2): 83.     CrossRef
  • Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii
    Michael J. Holmes, Premal Shah, Ronald C. Wek, William J. Sullivan, Ira J. Blader
    mSphere.2019;[Epub]     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway
Korean J Parasitol. 2018;56(2):135-145.   Published online April 30, 2018
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway
Korean J Parasitol. 2018;56(2):135-145.   Published online April 30, 2018
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway
Image Image Image Image Image
Fig. 1 T. gondii infection induces PI3K/Akt and mTOR/S6 signaling activity, and the activity was suppressed by PI3K/Akt or mTOR inhibitors. ARPE-19 cells were infected with T. gondii at MOI 10 for 24 hr and then treated with specific PI3K inhibitors LY294002 (LY 0.1, 1, 10 μM), wortmannin (WM 5, 50, 500 ng/ml) or mTOR inhibitor rapamycin (Rap 5, 50, 500 ng/ml) for 1 hr. The activity of each signaling protein levels were measured by western blot (A). Bar plot depicting the phospho-Akt (Thr308)/Total Akt, phospho-Akt (Ser473)/Total Akt, phospho-mTOR/Total mTOR, phospho-S6/Total S6 (B–E) ratios as determined by densitometric analysis of western blot and expressed as fold change compared with control ARPE-19 cells. For all panels, data are presented as the mean±SD. *P<0.05, **P<0.01 compared with control or MOI 10 of T. gondii-infected groups. All data shown are representative of 3 independent experiments.
Fig. 2 Differential regulations of PHLPP1, PHLPP2, CK2α, and CK2β after infection with T. gondii. ARPE-19 cells were infected with different MOI of T. gondii for 24 hr and then treated for 1 hr with specific PI3K inhibitors LY294002 (LY 10 μM), wortmannin (WM 500 ng/ml) or mTOR inhibitor rapamycin (Rap 500 ng/ml) and gene expression levels were measured by RT-PCR (A) and PHLPP1 (B), PHLPP2 (C), CK2α (D), CK2β (E) expression levels were determined by qRT-PCR. Values represent the Mean±SD of triplicates. *P<0.05 compared with control or MOI 10 of T. gondii-infected groups. All data shown are representative of 3 independent experiments.
Fig. 3 T. gondii-infection up-regulates VEGF gene expression but down-regulates PEDF gene expression. RT-PCR (A) and qRT-PCR (B, C) were used to measure host cell VEGF and PEDF transcript abundance. Values represent the Mean±SD of triplicates. *P<0.05 compared with control or MOI 10 of T. gondii-infected groups. All data shown are representative of 3 independent experiments.
Fig. 4 T. gondii-induced regulation of “Antioxidants and Phase II Enzymes” in ARPE-19 cell. The mRNA levels of both the catalytic (GCLC) and modulatory (GCLM) subunits of GCL as well as 4 other phases 2 detoxification genes, GSTP1, GSTA4, and NQO1 were measured by RT-PCR (A) and qRT-PCR (B, C, D, E, F) after T. gondii infection and inhibitors treatment. Values represent the Mean±SD of triplicates. *P<0.05 compared with control or MOI 10 of T. gondii-infected groups. All data shown are representative of 3 independent experiments.
Fig. 5 The model of T. gondii-modulated PI3K/Akt or mTOR pathways on regulating 3 different cellular events to generate parasite-favorable host environment.
Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

Primer sequences used for PCR and qRT-PCR in this study

Gene name Primer sequence (5′ to 3′) Products size (bp)

RT-PCR qRT-PCR
PHLPP1 F-ACACCGTGATTGCTCACTCC F-ACACCGTGATTGCTCACTCC 156/156
R-TTCCAGTCAGGTCTAGCTCC R-TTCCAGTCAGGTCTAGCTCC

PHLPP2 F-AGGTTCCTGAGCATCTCTTC F-AGGTTCCTGAGCATCTCTTC 128/128
R-GTTCAGGCCCTTCAGTTGAG R-GTTCAGGCCCTTCAGTTGAG

CK2α F-ATTGAATTAGATCCACGTTT F-CCCAACATCATCACACTGGC 346/159
R-GGTTGGCAGCAGCAATCACT R-CCAGGGCCTTCAGAATCTCA

CK2β F-ACTGTGAGAACCAGCCAATG F-TCAAGACACCATCACACGGA 287/187
R-CTTGAAGTTGCTGGCGGCTT R-CTGGGCTCTTGAAGTTGCTG

VEGF F-GAAGTGGTGAAGTTCATGGATGTC F-CTGTCTTGGGTGCATTGGAG 165/121/164
R-CGATCGTTCTGTATCAGTCTTTCC R-ACCAGGGTCTCGATTGGATG

PEDF F-CAGAAGAACCTCAAGAGTGCC F-AGAACCTCAAGAGTGCCTCC 310/176
R-CTTCATCCAAGTAGAAATCCTC R-GAGCTTCCCTTTCATCTGCG

GCLC F-GAGGCTATGTGTCAGACATTGATTGTCG F-CAGGTGACATTCCAAGCCTG 688/120
R-GTGTACTCCTCTGCAGCGAGCTCCGTG R-CGGTAAAAGGGAGATGCAGC

GCLM F-GTCCACGCACAGCGAGGAGCTTCATG F-CTGTATCAGTGGGCACAGGT 542/198
R-GATCATTGTGAGTCAACAGCTGTATG R-GTGCGCTTGAATGTCAGGAA

GSTP1 F-GCTGCGCGGCCCTGCGCATGCTG F-GGACTTGCTGCTGATCCATG 429/145
R-GCAGGTTGTAGTC AGCGAAGGAG R-ATTGATGGGGAGGTTCACGT

GSTA4 F-GGATGAAGTTGGTACACACCCGAAG F-CAACAAGTGCCCATGGTTGA 435/223
R-GAGGCTTCTTCTTGCTGCCAGGTTCAAG R-CTGGGCCATGTTAACCACT

NQO1 F-ATGGTCGGCAGAAGAGCACTGATCG F-ACTCTCTGCAAGGGATCCAC 708/174
R-TTTTCTAGCTTTGATCTGGTTGTCAGTTGGG R-TCTCCAGGCGTTTCTTCCAT

GAPDH F-ACCACAGTCCATGCCATCAC F-GAAGGTGAAGGTCGGAGTCA 452/131
R-TCCACCACCCTGTTGCTGT R-CCTGGAAGATGGTGATGGGA
Table 1 Primer sequences used for PCR and qRT-PCR in this study