Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Brief Communication

Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China

The Korean Journal of Parasitology 2018;56(4):391-396.
Published online: August 31, 2018

1School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, People’s Republic of China

2Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China

3School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832002, People’s Republic of China

4Institue of Veterinary Sciences, Academy of Military Medical Sciences, Jilin, Changchun, 1300062, People’s Republic of China

5College of Animal Science, Tarim University, Alar City, Xinjiang 843300, PR China

*Corresponding author (wangyuanzhi621@126.com)

These authors contributed equally to this work.

• Received: July 31, 2018   • Revised: August 18, 2018   • Accepted: August 18, 2018

© 2018, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 9,150 Views
  • 144 Download
  • 19 Web of Science
  • 17 Crossref
  • 24 Scopus
prev

Citations

Citations to this article as recorded by  Crossref logo
  • Gene Polymorphism of Antigen B Subunit 2 and Pathogenesis of Cystic Echinococcosis in Murine Model
    Hadi M. Alsakee, Hussein M. Abdulla, Reshna K. Albarzanji
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY.2025; 13(1): 42.     CrossRef
  • Genetic Variation Within and Between G1 and G3 Genotypes of Echinococcus granulosus sensu stricto from Chile Revealed by Partial DNA Sequencing of rrnS Gene Marker
    Victoria Freire, Gittith Sánchez, Flery Fonseca, Alejandro Hidalgo, Alex Vargas, Juan Venegas
    Vector-Borne and Zoonotic Diseases.2025; 25(5): 339.     CrossRef
  • Comparative evaluation of mitochondrial gene markers for molecular diagnosis of Echinococcus granulosus sensu lato in clinical samples
    Sumeeta Khurana, Reena Yadav, Anupma Dhaka, Abhishek Mewara, Lileshwar Kaman, Ajay Duseja, Naveen Kalra
    Diagnostic Microbiology and Infectious Disease.2025; 113(2): 116904.     CrossRef
  • Prevalence and spatial distribution characteristics of human echinococcosis: A county-level modeling study in southern Xinjiang, China
    Yue Zhang, Jun Wu, Simayi Adili, Shuo Wang, Haiting Zhang, Guangzhong Shi, Jiangshan Zhao
    Heliyon.2024; 10(7): e28812.     CrossRef
  • Epidemiology and genetic diversity of Echinococcus granulosus sensu stricto in the East Tianshan Mountains, Xinjiang, China
    Wulijiang Kamali, Si-Yun Wang, Wei-Dong Luo, Shuai Liu, Li Zhao, Xing-Yu Pan, Bing-Jie Wang, Yong-Hui Mu, Tuoliehuojia Jiawuti, Kadierding Aierken, Zhuang-Zhi Zhang, Wan-Li Ban
    Parasitology Research.2024;[Epub]     CrossRef
  • Survey and Molecular Characterization of Echinococcus granulosus sensu stricto from Livestock and Humans in the Altai Region of Xinjiang, China
    Baoping Guo, Li Zhao, Lu Zhao, Rongsheng Mi, Xu Zhang, Bingjie Wang, Gang Guo, Yuan Ren, Wenjing Qi, Zhuangzhi Zhang
    Pathogens.2023; 12(1): 134.     CrossRef
  • Update on the genetic diversity and population structure of Echinococcus granulosus in Gansu Province, Tibet Autonomous Region, and Xinjiang Uygur Autonomous Region, Western China, inferred from mitochondrial cox1, nad1, and nad5 sequences
    Nigus Abebe Shumuye, Li Li, John Asekhaen Ohiolei, Sayed Ajmal Qurishi, Wen-Hui Li, Nian-Zhang Zhang, Yan-Tao Wu, Yao-Dong Wu, Sheng-Zhi Gao, Fu-Heng Zhang, Xue-Qi Tian, Wen-Jun Tian, Yong Fu, Xie-Zhong Wang, Yong-Hong Pan, Fang Zhan, Lin-Sheng Zhang, Min
    Parasitology Research.2023; 122(5): 1107.     CrossRef
  • Molecular characterization of cattle and sheep isolates of Echinococcus granulosus from Elazig province in Turkey and expression analysis of the non-coding RNAs, egr-miR-7, egr-miR-71 and egr-miR-96
    Bunyamin Irehan, Figen Celik, Ergun Koroglu, Ahmet Tektemur, Sami Simsek
    Experimental Parasitology.2023; 251: 108551.     CrossRef
  • Echinococcus granulosus sensu lato Genotypes in Different Hosts Worldwide: A Systematic Review
    Carlos Manterola, Armando Totomoch-Serra, Claudio Rojas, Ángela L. Riffo-Campos, Nayely García-Méndez
    Acta Parasitologica.2022; 67(1): 161.     CrossRef
  • Human Cystic Echinococcosis in Lebanon: A Retrospective Study and Molecular Epidemiology
    Gaelle Joanny, Maria Grazia Cappai, Francesca Nonnis, Claudia Tamponi, Giorgia Dessì, Naunain Mehmood, Julien Dahdah, Chadi Hosri, Antonio Scala, Antonio Varcasia
    Acta Parasitologica.2022; 67(1): 186.     CrossRef
  • Meta-analysis of the prevalence of bovine cystic echinococcosis in China during decade
    Xin-Bo Yang, Xiang-Zhu Meng, Yan Zhao, Jin-Ping Zhao, Chao Chen, Ya Qin, Yuan Zhang, Quan Zhao
    Research in Veterinary Science.2022; 152: 465.     CrossRef
  • Food-borne zoonotic echinococcosis: A review with special focus on epidemiology
    Mughees Aizaz Alvi, Abdullah F. Alsayeqh
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Theileria, Hepatozoon and Taenia infection in great gerbils (Rhombomys opimus) in northwestern China
    Na Ji, Xueling Chen, Gang Liu, Shanshan Zhao, Wenbo Tan, Guangyuan Liu, Jiangguo Zhang, Yuanzhi Wang
    International Journal for Parasitology: Parasites and Wildlife.2021; 15: 79.     CrossRef
  • Advances in research on echinococcoses epidemiology in China
    Mei-Hua Fu, Xu Wang, Shuai Han, Ya-Yi Guan, Robert Bergquist, Wei-Ping Wu
    Acta Tropica.2021; 219: 105921.     CrossRef
  • Multiple haplotypes of Echinococcus granulosus sensu stricto in single naturally infected intermediate hosts
    Christian Hidalgo, Caroll Stoore, Ismael Pereira, Rodolfo Paredes, Cristian A. Alvarez Rojas
    Parasitology Research.2020; 119(2): 763.     CrossRef
  • miRNAs and lncRNAs in Echinococcus and Echinococcosis
    Zhi He, Taiming Yan, Ya Yuan, Deying Yang, Guangyou Yang
    International Journal of Molecular Sciences.2020; 21(3): 730.     CrossRef
  • Molecular characterization ofEchinococcus granulosusin livestock of Al-Madinah (Saudi Arabia)
    N.M. AL-Mutairi, H.A. Taha, A.H. Nigm
    Journal of Helminthology.2020;[Epub]     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China
Korean J Parasitol. 2018;56(4):391-396.   Published online August 31, 2018
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China
Korean J Parasitol. 2018;56(4):391-396.   Published online August 31, 2018
Close

Figure

  • 0
  • 1
Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China
Image Image
Fig. 1 Maximum-likelihood (ML; 500 bootstrap replicates) and neighbour-joining (NJ; 1,000 bootstrap replicates) phylogenetic tree of the CO1 constructed with MEGA 6.0 software, using the sequences of E. granulosus from Changji (●) and Ili (▲) regions in this study and the sequences available in the GenBank. The sequences from E. multilocularis and E. oligarthrus were used as outgroups. The scale bar represented the inferred substitutions per nucleotide site. The relative support for clades in the tree produced from the ML and NJ analyses were indicated above and below the branches, respectively.
Fig. 2 Median joining network for the E. granulosus s. s. genotype G1 samples from Changji and Ili regions, XUAR, China (n=55) based on sequences of 936 bp of mitochondrial DNA (CO1).
Genetic Diversity of Echinococcus granulosus Genotype G1 in Xinjiang, Northwest of China

Substitution in the CO1 gene for the E. granulosus G1 genotype in Changji and Ili regions, XUAR

G1 haplotype (Standard control) (AF297617) Mutation sites Sample source
YLN1 (variation) 594T/C; 729G/A; 742A/G cattle
YLY1 (variation) 381T/A; 594T/C; sheep
YLY2 (variation) 381T/A; 527C/T; 594T/C; 895T/C;900T/A sheep
YLY3 (variation) 381T/A; 527C/T; 594T/C sheep
YLY4 (variation) 381T/A; 594T/C; 905G/A sheep
YLY5 (variation) 594T/C; 897T/A; sheep
YLY16 (variation) 381T/A; 594T/C; 905G/C sheep
YLY17 (variation) 594T/C sheep
CJ128 (variation) 157A/G; 594T/C; sheep
CJ328 (variation) 486T/C; 594T/C; 875A/T sheep
CJ429 (variation) 100T/C; 594T/C; sheep
CJ529 (variation) 103,104GG/CC; 594T/C sheep
CJ618 (variation) 88G/C; 594T/C; 795G/A sheep
CJ719 (variation) 594T/C; 875A/T; 927G/A sheep
CJ23 (variation) 12G/T; 549C/T; 594T/C; 927G/A sheep
CJ51 (variation) 12G/T; 411T/C; 594T/C; 741T/C; 927G/A sheep
CJ75 (variation) 12G/T; 411T/C; 456C/T; 549C/T; 594T/C; 657C/T; 747T/C; 927G/A sheep
YL1 (variation) 12G/T; 508A/G; 594T/C; 927G/A sheep
YL2 (variation) 12G/T; 594T/C; 640A/G;927G/A sheep
YL5 (variation) 12G/T; 432T/C; 549C/T; 594T/C; 831A/G; 927G/A sheep
Table 1 Substitution in the CO1 gene for the E. granulosus G1 genotype in Changji and Ili regions, XUAR