Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence

The Korean Journal of Parasitology 2006;44(4):321-330.
Published online: December 20, 2006

1Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea.

2Department of Parasitology, Pusan National University School of Medicine, Pusan 602-739, Korea.

Corresponding author (dichung@knu.ac.kr)
• Received: June 20, 2006   • Accepted: November 13, 2006

Copyright © 2006 by The Korean Society for Parasitology

  • 11,056 Views
  • 88 Download
  • 34 Crossref
  • 38 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Calcium ions in tap water may increase the adhesion ability of Acanthamoeba, potentially enhancing its cytopathic effects on corneal cells
    Yu-Jen Wang, Yao-Tsung Chang, Tsun-Hsien Hsiao, Chun-Hsien Chen, Chih-Ming Tsai, Jian-Ming Huang
    Parasite.2025; 32: 71.     CrossRef
  • Proteases of Acanthamoeba
    Behroz Mahdavi Poor, Jalil Rashedi, Vahid Asgharzadeh, Amirali Mirmazhary, Nazila Gheitarani
    Parasitology Research.2024;[Epub]     CrossRef
  • Characterization of novel extracellular proteases produced by Acanthamoeba castellanii after contact with human corneal epithelial cells and their relevance to pathogenesis
    Alvie Loufouma-Mbouaka, Tania Martín-Pérez, Martina Köhsler, Zeynep Danisman, Maya Schwarz, Rounik Mazumdar, Ascel Samba-Louaka, Julia Walochnik
    Parasites & Vectors.2024;[Epub]     CrossRef
  • Comparative cytotoxicity of Acanthamoeba castellanii-derived conditioned medium on human corneal epithelial and stromal cells
    Abdullah Alhazmi, Laura E. Sidney, Andy Hopkinson, Hany M. Elsheikha
    Acta Tropica.2024; 257: 107288.     CrossRef
  • Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer
    Rohaya Abdul Halim, Hasseri Halim, Rosnani Hanim Mohd Hussain, Shafiq Aazmi, Naveed Ahmed Khan, Ruqaiyyah Siddiqui, Tengku Shahrul Anuar
    Journal of Water and Health.2024; 22(12): 2289.     CrossRef
  • Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram
    Alvaro de Obeso Fernández del Valle, Luis Javier Melgoza-Ramírez, María Fernanda Esqueda Hernández, Alfonso David Rios-Pérez, Sutherland K. Maciver
    Processes.2023; 11(9): 2620.     CrossRef
  • Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes
    Daniele Corsaro
    Microorganisms.2022; 10(11): 2162.     CrossRef
  • In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer
    Rosnani Hanim Mohd Hussain, Mohamed Kamel Abdul Ghani, Naveed Ahmed Khan, Ruqaiyyah Siddiqui, Shafiq Aazmi, Hasseri Halim, Tengku Shahrul Anuar
    Pathogens.2022; 11(12): 1474.     CrossRef
  • Differential expression of Acanthamoeba castellanii proteins during amoebic keratitis in rats
    Ana Carolina Carvalho-Silva, Camila H. Coelho, Cecília Cirelli, Frederico Crepaldi, Isabela Aurora Rodrigues-Chagas, Cinthia Furst, Daniel Carvalho Pimenta, Juliano Simões de Toledo, Ana Paula Fernandes, Adriana Oliveira Costa
    Experimental Parasitology.2021; 221: 108060.     CrossRef
  • Peganum harmala Extract Has Antiamoebic Activity to Acanthamoeba triangularis Trophozoites and Changes Expression of Autophagy-Related Genes
    Rachasak Boonhok, Suthinee Sangkanu, Julalak Chuprom, Mayuna Srisuphanunt, Roghayeh Norouzi, Abolghasem Siyadatpanah, Farzaneh Mirzaei, Watcharapong Mitsuwan, Sueptrakool Wisessombat, Maria de Lourdes Pereira, Mohammed Rahmatullah, Polrat Wilairatana, Chr
    Pathogens.2021; 10(7): 842.     CrossRef
  • Extracellular protease profile of Acanthamoeba after prolonged axenic culture and after interaction with MDCK cells
    Cecília Cirelli, Elaine Isabela Soares Mesquita, Isabela Aurora Rodrigues Chagas, Cinthia Furst, Cynara Oliveira Possamai, Jonatas Santos Abrahão, Ludmila Karen dos Santos Silva, Marina Felipe Grossi, Carlos Alberto Tagliati, Adriana Oliveira Costa
    Parasitology Research.2020; 119(2): 659.     CrossRef
  • Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms
    Kevin H. Martin, Grace I. Borlee, William H. Wheat, Mary Jackson, Bradley R. Borlee
    Microbiology .2020; 166(8): 695.     CrossRef
  • Anti-amoebic potential of azole scaffolds and nanoparticles against pathogenic Acanthamoeba
    Shweta Walvekar, Ayaz Anwar, Areeba Anwar, Nanthini Sridewi, Mohammad Khalid, Yoon Yen Yow, Naveed Ahmed Khan
    Acta Tropica.2020; 211: 105618.     CrossRef
  • Identification and biochemical characterisation of Acanthamoeba castellanii cysteine protease 3
    Zhixin Wang, Duo Wu, Hiroshi Tachibana, Meng Feng, Xun-jia Cheng
    Parasites & Vectors.2020;[Epub]     CrossRef
  • Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells
    Diego de Souza Gonçalves, Marina da Silva Ferreira, Susie Coutinho Liedke, Kamilla Xavier Gomes, Gabriel Afonso de Oliveira, Pedro Ernesto Lopes Leão, Gabriele Vargas Cesar, Sergio H. Seabra, Juliana Reis Cortines, Arturo Casadevall, Leonardo Nimrichter,
    Virulence.2018; 9(1): 818.     CrossRef
  • Characterization of extracellular proteases of Acanthamoeba genotype T4 isolated from different sources in Iran
    Behroz Mahdavi Poor, Abdolhossein Dalimi, Fatemeh Ghafarifar, Fariba Khoshzaban, Jalal Abdolalizadeh
    Parasitology Research.2017; 116(12): 3373.     CrossRef
  • Characterisation and expression analysis of trophozoite and cyst proteins of Acanthamoeba spp. isolated from Acanthamoeba keratitis (AK) patient
    Himansu Sekhar Behera, Gita Satpathy
    Molecular and Biochemical Parasitology.2016; 205(1-2): 29.     CrossRef
  • Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition
    Gaurav Kumar Pal, Suresh PV
    RSC Advances.2016; 6(40): 33763.     CrossRef
  • Acanthamoeba culbertsoni: Electron‐Dense Granules in a Highly Virulent Clinical Isolate
    Bibiana Chávez‐Munguía, Lizbeth Salazar‐Villatoro, Maritza Omaña‐Molina, Martha Espinosa‐Cantellano, Elizabeth Ramírez‐Flores, Jacob Lorenzo‐Morales, Adolfo Martínez‐Palomo
    Journal of Eukaryotic Microbiology.2016; 63(6): 744.     CrossRef
  • Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases
    Yu-Zhong Zhang, Li-Yuan Ran, Chun-Yang Li, Xiu-Lan Chen, F. E. Löffler
    Applied and Environmental Microbiology.2015; 81(18): 6098.     CrossRef
  • Acanthamoeba Protease Activity Promotes Allergic Airway Inflammation via Protease-Activated Receptor 2
    Mi Kyung Park, Min Kyoung Cho, Shin Ae Kang, Hye-Kyung Park, Dong-Hee Kim, Hak Sun Yu, Venuprasad K. Poojary
    PLoS ONE.2014; 9(3): e92726.     CrossRef
  • Characterization of a Novel Subtilisin-like Protease Myroicolsin from Deep Sea Bacterium Myroides profundi D25 and Molecular Insight into Its Collagenolytic Mechanism
    Li-Yuan Ran, Hai-Nan Su, Ming-Yang Zhou, Lei Wang, Xiu-Lan Chen, Bin-Bin Xie, Xiao-Yan Song, Mei Shi, Qi-Long Qin, Xiuhua Pang, Bai-Cheng Zhou, Yu-Zhong Zhang, Xi-Ying Zhang
    Journal of Biological Chemistry.2014; 289(9): 6041.     CrossRef
  • Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family
    Li‐Yuan Ran, Hai‐Nan Su, Guo‐Yan Zhao, Xiang Gao, Ming‐Yang Zhou, Peng Wang, Hui‐Lin Zhao, Bin‐Bin Xie, Xi‐Ying Zhang, Xiu‐Lan Chen, Bai‐Cheng Zhou, Yu‐Zhong Zhang
    Molecular Microbiology.2013; 90(5): 997.     CrossRef
  • Pathological characteristics of the different stages of Acanthamoeba keratitis
    Yuzhao Sun, Jing Hong, Pei Zhang, Rongmei Peng, Gege Xiao
    Histopathology.2013; 63(6): 862.     CrossRef
  • Proteases fromEntamoebaspp. and Pathogenic Free-Living Amoebae as Virulence Factors
    Jesús Serrano-Luna, Carolina Piña-Vázquez, Magda Reyes-López, Guillermo Ortiz-Estrada, Mireya de la Garza
    Journal of Tropical Medicine.2013; 2013: 1.     CrossRef
  • Acanthamoeba interactions with the blood–brain barrier under dynamic fluid flow
    James Edwards-Smallbone, Richard J. Pleass, Naveed A. Khan, Robin J. Flynn
    Experimental Parasitology.2012; 132(3): 367.     CrossRef
  • Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix
    Carolina Piña-Vázquez, Magda Reyes-López, Guillermo Ortíz-Estrada, Mireya de la Garza, Jesús Serrano-Luna
    Journal of Parasitology Research.2012; 2012: 1.     CrossRef
  • Serine protease activities in Leishmania (Leishmania) chagasi promastigotes
    Raquel Elisa da Silva-López, Tatiana Resende dos Santos, José Andrés Morgado-Díaz, Marcelo Neves Tanaka, Salvatore Giovanni de Simone
    Parasitology Research.2010; 107(5): 1151.     CrossRef
  • Pathogenesis of Acanthamoeba Keratitis
    Noorjahan Panjwani
    The Ocular Surface.2010; 8(2): 70.     CrossRef
  • Acanthamoeba culbertsoni Elicits Soluble Factors That Exert Anti-Microglial Cell Activity
    Jenica L. Harrison, Gabriela A. Ferreira, Erinn S. Raborn, Audrey D. Lafrenaye, Francine Marciano-Cabral, Guy A. Cabral
    Infection and Immunity.2010; 78(9): 4001.     CrossRef
  • Differential effects of α-helical and β-hairpin antimicrobial peptides against Acanthamoeba castellanii
    R. S. SACRAMENTO, R. M. MARTINS, A. MIRANDA, A. S. S. DOBROFF, S. DAFFRE, A. S. FORONDA, D. DE FREITAS, S. SCHENKMAN
    Parasitology.2009; 136(8): 813.     CrossRef
  • Elastase secretion in Acanthamoeba polyphaga
    Gabriela A. Ferreira, Ana C.M. Magliano, Elizabeth M.F. Pral, Silvia C. Alfieri
    Acta Tropica.2009; 112(2): 156.     CrossRef
  • Characterization of a Serine Proteinase Mediating Encystation of Acanthamoeba
    Eun-Kyung Moon, Dong-Il Chung, Yeon-Chul Hong, Hyun-Hee Kong
    Eukaryotic Cell.2008; 7(9): 1513.     CrossRef
  • Differentially expressed genes of Acanthamoeba castellanii during encystation
    Eun-Kyung Moon, Dong-Il Chung, Yeon-Chul Hong, Hyun-Hee Kong
    The Korean Journal of Parasitology.2007; 45(4): 283.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence
Korean J Parasitol. 2006;44(4):321-330.   Published online December 20, 2006
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence
Korean J Parasitol. 2006;44(4):321-330.   Published online December 20, 2006
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence
Image Image Image Image Image Image Image Image Image
Fig. 1 A. Light microscopic pictures of Giemsa stained human corneal cells after coculture with trophozoites of the 3 strains of Acanthamoeba, OC-3A, KA/E2 and Neff, with or without serine proteinase inhibitor, PMSF. B. Bar graph showing calculated cytopathic effects of the 3 strains.
Fig. 2 Anion exchange column chromatograms of proteinase purification from the culture supernatant of Acanthamoeba strains, OC-3A, KA/E2 and Neff.
Fig. 3 SDS-PAGE of the purified enzyme of the 3 strains, OC-3A, KA/E2 and Neff in a 4-20% gradient acrylamide gel. A single protein band stained with Coomassie blue is observed with a size of approximately 33 kDa in 3 strains. Lane: M, standard size marker; 1, OC-3A; 2, KA/E2; 3, Neff strain.
Fig. 4 Proteolytic activity of the purified 33 kDa serine proteinase of Acanthamoeba strains, OC-3A, KA/E2 and Neff against extracellular matrix proteins. M, standard size marker; C, reaction mixture without enzyme; Reaction mixtures for each strain were incubated for 30'', 10', 30'.
Fig. 5 Proteolytic activity of the purified 33 kDa serine proteinase of Acanthamoeba strains, OC-3A, KA/E2 and Neff against host serum proteins. M, standard marker; C, reaction mixture without enzyme; Reaction mixtures for each strain were incubated for 30'', 10', 30'.
Fig. 6 Proteolytic activity of the purified 33 kDa serine proteinase of Acanthamoeba strains, OC-3A, KA/E2 and Neff against immunoglobulins. M, standard marker; C, reaction mixture without enzyme; Reaction mixtures for each strain were incubated for 30'', 10', 30'.
Fig. 7 Gelatin zymogram of the purified enzyme of Acanthamoeba strains, OC-3A, KA/E2 and Neff. Acrylamide gel copolymerized with gelatin was stained with Commassie blue after incubation with the purified serine proteinase loaded in the hole of the gel.
Fig. 8 Cytopathic effects of the purified 33 kDa enzymes of Acanthamoeba strains, OC-3A, KA/E2 and Neff on HCE cell. Cytopathy was determined by staining the culture plate with Giemsa after incubation with the purified enzyme.
Fig. 9 Gelatin zymogram of culture supernatant of Acanthamoeba strains, OC-3A, KA/E2 and Neff. Acrylamide gel copolymerized with gelatin was stained with Commassie blue after incubation with anti-serum against purified 33 kDa serine proteinase or without anti-serum.
Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence
Step Total protein (mg)
Total activity (nmol/min)
Specific activity (nmol/min/mg)
Purification (fold)
Yield (%)
OC-3A KA/E2 Neff OC-3A KA/E2 Neff OC-3A KA/E2 Neff OC-3A KA/E2 Neff OC-3A KA/E2 Neff
Culture supernatant 135.0 156.3 246.1 1836.3 813.0 516.7 13.6 5.2 2.1 1.0 1.0 1.0 100.0 100.0 100.0
Amonium sulfate percipitation 25.3 28.0 30.0 1120.7 770 426.0 44.3 27.5 14.2 3.3 5.3 6.8 61.0 94.7 82.4
CM-Sepharose 8.0 3.7 6.5 763.0 243.1 226.9 95.5 66.6 34.9 7.0 12.8 16.8 41.6 29.9 43.9
Sephacryl S-200 0.4 0.3 0.4 364.5 142.6 120.6 1041.4 570.3 335.0 76.6 109.7 159.5 19.8 17.5 23.3
Q-anion exchange 0.04 0.03 0.02 45.8 26.1 10.6 1145.0 814.4 704.6 84.2 156.6 335.5 2.5 3.2 2.0
Inhibitor/Activitor Final concentration Activity as percentage of control
OC-3A KA/E2 Neff
Control (none) 100.0 100.0 100.0
Serine Class
 PMSF 1.0 mM 6.1 6.9 7.3
 DFP 1.0 mM 15.3 15.9 16.7
Cystein Class
 E-64 10.0 μg/ml 115.8 96.7 93.3
 DTT 1.0 mM 111.9 85.8 102.0
Aspartic Class
 Pepstatin A 1.0 μg/ml 107.9 97.4 96.7
Metallo Class
 EDTA 1.0 mM 102.6 108.3 90.3
 1,10-Phenanthroline 1.0 mM 91.8 107.2 93.3
Table 1. Purification steps of 33 kDa serine proteinase from culture supernatant of 3 strains of Acanthamoeba, OC-3A, KA-E2 and Neff
Table 2. Effects of proteinase inhibitors and activators on the activity of the purified enzymes of 3 strains of Acanthamoeba