Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand

The Korean Journal of Parasitology 2022;60(2):109-116.
Published online: April 20, 2022

Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand

*Corresponding author (jirajira28@yahoo.com, kjirapor@tu.ac.th)
• Received: October 12, 2021   • Revised: March 6, 2022   • Accepted: March 10, 2022

© 2022, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 4,199 Views
  • 218 Download
  • 8 Web of Science
  • 9 Crossref
  • 11 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management
    Xyonane Segovia, Bhavya Srivastava, Sergio Serrato-Arroyo, Ashley Guerrero, Silvie Huijben
    Malaria Journal.2025;[Epub]     CrossRef
  • The Impact of Plasmodium falciparum Adenosine Triphosphatase-6 Gene (PfATPase6) Mutations in Artemisinin Resistance
    Obafemi Yemisi Dorcas, Atokolo Austine
    Journal of Pure and Applied Microbiology.2025; 19(4): 2575.     CrossRef
  • Plasmodium falciparum dhps and dhfr markers of resistance to sulfadoxine–pyrimethamine five years (2016–2020) after the implementation of seasonal malaria chemoprevention in Cameroon
    Pacome V. K. Tchuenkam, Lesley N. Ngum, Innocent M. Ali, Jean Paul K. Chedjou, Akindeh M. Nji, Palmer M. Netongo, Randolph Ngwafor, Peter Thelma N. Niba, Calvino F. Tah, William D. Nana, Germaine Ekoyol, Jude D. Bigoga, Dorothy F. Ashu, Christopher B. Tum
    Wellcome Open Research.2024; 9: 323.     CrossRef
  • Exploring the Recent Pioneering Developments of Small Molecules in Antimalarial Drug Armamentarium: A Chemistry Prospective Appraisal
    Tameika Bagratee, Ritika Prawlall, Thabani Ndlovu, Sinqobile Sibisi, Sisa Ndadane, Baji Baba Shaik, Mahesh B. Palkar, Raghavachary Gampa, Rajshekhar Karpoormath
    Chemistry & Biodiversity.2024;[Epub]     CrossRef
  • In vitro efficacy of next-generation dihydrotriazines and biguanides against babesiosis and malaria parasites
    Pratap Vydyam, Meenal Chand, Shalev Gihaz, Isaline Renard, Gavin D. Heffernan, Laura R. Jacobus, David P. Jacobus, Kurt W. Saionz, Raju Shah, Hong-Ming Shieh, Jacek Terpinski, Wenyi Zhao, Emmanuel Cornillot, Choukri Ben Mamoun, Audrey Odom John
    Antimicrobial Agents and Chemotherapy.2024;[Epub]     CrossRef
  • Antimalarial drug sulfadoxine induces gametocytogenesis in Plasmodium berghei
    Wihda Aisarul Azmi, Andita Fitri Mutiara Rizki, Achmad Shidiq, Yenny Djuardi, I Made Artika, Josephine Elizabeth Siregar
    Malaria Journal.2024;[Epub]     CrossRef
  • Prevalence of molecular markers of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates from West Africa during 2012–2022
    Ruimin Zhou, Suhua Li, Penghui Ji, Shucheng Ruan, Ying Liu, Chengyun Yang, Dan Qian, Zhiquan He, Dan Wang, Deling Lu, Hongwei Zhang, Yan Deng
    Scientific Reports.2024;[Epub]     CrossRef
  • A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria
    Adebanjo J. Adegbola, Omotade A. Ijarotimi, Akaninyene E. Ubom, Bukola A. Adesoji, Olajide E. Babalola, Emma F. Hocke, Helle Hansson, Andria Mousa, Oluseye O. Bolaji, Michael Alifrangis, Cally Roper
    Malaria Journal.2023;[Epub]     CrossRef
  • Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds
    S. Maheen Abdul Rahman, Jasvinder Singh Bhatti, Suresh Thareja, Vikramdeep Monga
    European Journal of Medicinal Chemistry.2023; 259: 115699.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand
Korean J Parasitol. 2022;60(2):109-116.   Published online April 20, 2022
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand
Korean J Parasitol. 2022;60(2):109-116.   Published online April 20, 2022
Close

Figure

  • 0
  • 1
Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand
Image Image
Fig. 1 The polymorphism of pfdhfr (A), pfdhps (B), and pfcrt (C) gene by gel electrophoresis. W-wildtype, M-mutant, S/N-serine/threonine, Mi-mixed, K1-P. falciparum K1 strain, 3D7- P. falciparum 3D7 strain, U-undigested fragment. Fragment sizes in base pair (bp) are shown.
Fig. 2 The proportions of mutations in 3 resistance genes (pfdhfr, pfdhps, and pfcrt) observed in P. falciparum isolates in this study.
Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand

The primers and enzymes for genotyping of Pfdhfr, Pfdhps and Pfcrt genes

Gene PCR Primer Primer sequence (5′ to 3′) RFLP position Restrictionenzyme PCR size (bp) Restriction product size (bp)

Wild type Mutation
Pfdhfr Primary M1 TTTATGATGGAACAAGTCTGC
M5 AGTATATACATCGCTAACAGA
Secondary M3 TTTATGATGGAACAAGTCTGCGACGTT A16V Nlalll 522 376, 93, 53 376, 146
(16, 51, 108, 164) F/ AAATTCTTGATAAACAACGGAACCTTTTA N51I MluCI 154, 120, 65, 55 218, 120, 65, 55
S108T BstNI 522 181, 145
S108N Bsrl 522 332, 190
I164L DraI 245, 171, 107 245, 143, 107, 27
Secondary F GAAATGTAATTCCCTAGATATGGAATATT C59R Xmnl 326 189, 137 163, 137, 26
(59) M4 TTAATTTCCCAAGTAAAACTATTAGAGCTTC

Pfdhps Primary R2 AACCTAAACGTGCTGTTCAA
R/ AATTGTGTGATTTGTCCACAA
Secondary K TGCTAGTGTTATAGATATAGGATGAGCATC S436A MnlI 438 317, 121 278, 121, 39
(436, 437, 540) K/ CTATAACGAGGTATTGCATTTAATGCAAGAA A437G AvaII 438 404, 34
K540E FokI 405, 33 320, 85, 33
Secondary L ATAGGATACTATTTGATATTGGACCAGGATTCG A581G BslI 161 161 128, 33
(581, 613) L/ TATTACAACATTTTGATCATTCGCGCAACCGG A613S BsaWI 161 131, 30
A613T AgeI 161 128, 33

Pfcrt Primary CRTP1 CCGTTAATAATAAATACACGCAG
CRTP2 CGGATGTTACAAAACTATAGTTACC
Secondary CRTD1 TGTGCTCATGTGTTTAAACTT K76T ApoI 134 100, 34 134
CRTD2 CAAAACTATAGTTACCAATTTTG

Prevalence of Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) single nucleotide polymorphisms (SNPs) in 200 P. falciparum isolates from 2 endemic areas of Thailand

Gene Amino acid position SNPs Prevalence (%) P-value

Total n=200 Tak Province n=100 Yala Province n=100
Pfdhfr 16 A (wild-type) 200 (100.0) 100 (100.0) 100 (100.0) -
V (mutant) 0 (0.0) 0 (0.0) 0 (0.0)
51 N (wild-type) 3 (1.5) 3 (3.0) 0 (0.0) 0.001a
I (mutant) 187 (93.5) 87 (87.0) 100 (100.0)
M (mix) 10 (5.0) 10 (10.0) 0 (0.0)
59 C (wild-type) 0 (0.0) 0 (0.0) 0 (0.0) -
R (mutant) 200 (100.0) 100 (100.0) 100 (100.0)
108 S (wild-type) 0 (0.0) 0 (0.0) 0 (0.0) -
T (mutant) 0 (0.0) 0 (0.0) 0 (0.0)
N (mutant) 200 (100.0) 100 (100.0) 100 (100.0)
164 I (wild-type) 84 (42.0) 6 (6.0) 78 (78.0) <0.001a
L (mutant) 103 (51.5) 86 (86.0) 17 (17.0)
M (mix) 13 (6.5) 8 (8.0) 5 (5.0)

Pfdhps 436 S (wild-type) 158 (79.0) 79 (79.0) 79 (79.0) 0.946
A (mutant) 29 (14.5) 14 (14.0) 15 (15.0)
M (mix) 13 (6.5) 7 (7.0) 6 (6.0)
437 A (wild-type) 0 (0.0) 0 (0.0) 0 (0.0) -
G (mutant) 200 (100.0) 100 (100.0) 100 (100.0)
540 K (wild-type) 116 (58.0) 16 (16.0) 100 (100.0) <0.001a
E (mutant) 83 (41.5) 83 (83.0) 0 (0.0)
M (mix) 1 (0.5) 1 (1.0) 0 (0.0)
581 A (wild-type) 7 (3.5) 7 (7.0) 0 (0.0) 0.007a
G (mutant) 193 (96.5) 93 (93.0) 100 (100.0)
613 A (wild-type) 100 (100.0) 100 (100.0) 100 (100.0) -
S/T (mutant) 0 (0.0) 0 (0.0) 0 (0.0)

aP-value were statistically significant between 2 areas.

Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) alleles in 170 P. falciparum isolates from 2 endemic areas of Thailand

Pfdhfr haplotypesa Amino acid position Prevalence (%)


16 51 59 108 164 Total
n=170
Tak Province
n=81
Yala Province
n=89
Triple mutation A I R N I 78 (45.9) 6 (7.4) 72 (80.9)

Triple mutation A N R N L 3 (1.8) 3 (3.7) 0 (0.0)

Quadruple mutation A I R N L 89 (52.4) 72 (88.9) 17 (19.1)

Pfdhps haplotypesa Amino acid position Prevalence (%)


436 437 540 581 613 Total
n=170
Tak Province
n=81
Yala Province
n=89

Double mutation S G E A A 2 (1.2) 2 (2.5) 0 (0.0)

Double mutation S G K G A 85 (50.0) 11 (13.6) 74 (83.1)

Triple mutation A G E A A 2 (1.2) 2 (2.5) 0 (0.0)

Triple mutation A G K G A 16 (9.4) 1 (1.2) 15 (16.9)

Triple mutation S G E G A 57 (33.5) 57 (70.4) 0 (0.0)

Quadruple mutation A G E G A 8 (4.7) 8 (9.9) 0 (0.0)

aP-value were statistically significant between 2 areas.

Allele combinations of Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) in 170 P. falciparum isolates from 2 endemic areas of Thailand

Pfdhfr-Pfdhps allele combinations Prevalence (%)
Total
n=170
Tak Province
n=81
Yala Province
n=89
AIRNI-AGEGA 1 (0.6) 1 (1.2) 0 (0.0)
AIRNI-AGKGA 13 (7.6) 0 (0.0) 13 (14.6)
AIRNI-SGEGA 4 (2.4) 4 (4.9) 0 (0.0)
AIRNI-SGKGA 60 (35.3) 1 (1.2) 59 (66.3)
AIRNL-AGEGA 7 (4.1) 7 (8.6) 0 (0.0)
AIRNL-AGKGA 3 (1.8) 1 (1.2) 2 (2.2)
AIRNL-SGEAA 2 (1.2) 2 (2.5) 0 (0.0)
AIRNL-SGEGA 52 (30.6) 52 (64.2) 0 (0.0)
AIRNL-SGKGA 25 (14.7) 10 (12.3) 15 (16.9)
ANRNL-AGEAA 2 (1.2) 2 (2.5) 0 (0.0)
ANRNL-SGEGA 1 (0.6) 1 (1.2) 0 (0.0)
Table 1 The primers and enzymes for genotyping of Pfdhfr, Pfdhps and Pfcrt genes
Table 2 Prevalence of Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) single nucleotide polymorphisms (SNPs) in 200 P. falciparum isolates from 2 endemic areas of Thailand

P-value were statistically significant between 2 areas.

Table 3 Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) alleles in 170 P. falciparum isolates from 2 endemic areas of Thailand

P-value were statistically significant between 2 areas.

Table 4 Allele combinations of Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) in 170 P. falciparum isolates from 2 endemic areas of Thailand