| Guiquan Guan | 4 Articles |
The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.
Citations Citations to this article as recorded by
In order to determine the effect of various hosts on feeding performance of Rhipicephalus (Boophilus) microplus, we used 3 mammalian species as hosts, cattle (Qinchuan), sheep (T an), and rabbits (Japanese white rabbit) for infest-ing ticks. Five hundreds of R. microplus larvae were exposed to each animal (3 animals/host species). Tick recoveries were 11.0%, 0.47%, and 5.5% from cattle, sheep, and rabbits, respectively. The averages of tick feeding periods were not significantly different on cattle, sheep, and rabbits, 28.8, 25.3, and 26.7 days, respectively. The average weights of individual engorged female from cattle, sheep, and rabbits were 312.5, 219.1, and 130.2 mg, respectively and those of egg mass weights each to 85.0, 96.6, and 17.8 mg. The highest egg hatching rate was in the ticks from cattle (96.0%), fol-lowed by those from rabbits (83.0%) and sheep (19.2%). These data suggest that rabbits could be as an alternative host to cultivate R. microplus for evaluating vaccines and chemical and biological medicines against the tick in the laboratory, although the biological parameters of ticks were less than those from cattle.
Citations Citations to this article as recorded by
Theileria annulata is a tick-borne intracellular protozoan parasite that causes tropical theileriosis, a fatal bovine lymphoproliferative disease. The parasite predominantly invades bovine B lymphocytes and macrophages and induces host cell transformation by a mechanism that is not fully comprehended. Analysis of signaling pathways by quantitative real-time PCR (qPCR) could be a highly efficient means to understand this transformation mechanism. However, accurate analysis of qPCR data relies on selection of appropriate reference genes for normalization, yet few papers on T. annulata contain evidence of reference gene validation. We therefore used the geNorm and NormFinder programs to evaluate the stability of 5 candidate reference genes; 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ACTB (β-actin), PRKG1 (protein kinase cGMP-dependent, type I) and TATA box binding protein (TBP). The results showed that 18S rRNA was the reference gene most stably expressed in bovine PBMCs transformed and non-transformed with T. annulata, followed by GAPDH and TBP. While 18S rRNA and GAPDH were the best combination, these 2 genes were chosen as references to study signaling pathways involved in the transformation mechanism of T. annulata.
Citations Citations to this article as recorded by
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Citations Citations to this article as recorded by
|
|