Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

7
results for

"18S rDNA"

Article category

Keywords

Publication year

Authors

Funded articles

"18S rDNA"

Brief Communication

Molecular characterization of tick genera Haemaphysalis, Ixodes, and Amblyomma in Korea
Subin Lee, Badriah Alkathiri, Kyu-Sung Ahn, Jiwon Kim, So Youn Youn, Mi-Sun Yoo, Hyang-Sim Lee, Jae-Myung Kim, Dongmi Kwak, Sung Shik Shin, Seung-Hun Lee
Parasites Hosts Dis 2025;63(3):272-277.
Published online August 20, 2025
DOI: https://doi.org/10.3347/PHD.25035
Ticks are important ectoparasites that serve as key vectors of various pathogens, posing significant risks to both human and animal health. In this study, 3 genera and 5 species of ticks, including Haemaphysalis longicornis, H. flava, H. doenitzi, Ixodes nipponensis, and Amblyomma testudinarium, were analyzed both morphologically and molecularly. Morphological identification was conducted using established taxonomic keys, followed by molecular characterization through analysis of complete cytochrome c oxidase subunit 1 (cox1, 1,539 bp) and mitochondrial 16S rDNA (1,191–1,215 bp), and nuclear 18S rDNA (1,812–1,816 bp). Phylogenetic and pairwise distance analyses demonstrated that all 3 genes were effective for genus identification; cox1 and mitochondrial 16S rDNA were more effective than 18S rDNA in species identification. Additionally, this study is the first to identify H. doenitzi in the Korean mainland via molecular characterization. These results may serve as reference data for the molecular identification of tick species.
  • 1,640 View
  • 39 Download

Original Article

Loop-Mediated Isothermal Amplification Targeting 18S Ribosomal DNA for Rapid Detection of Acanthamoeba
Hye-Won Yang, Yu-Ran Lee, Noboru Inoue, Bijay Kumar Jha, Dinzouna-Boutamba Sylvatrie Danne, Hong-Kyun Kim, Junhun Lee, Youn-Kyoung Goo, Hyun-Hee Kong, Dong-Il Chung, Yeonchul Hong
Korean J Parasitol 2013;51(3):269-277.
Published online June 30, 2013
DOI: https://doi.org/10.3347/kjp.2013.51.3.269

Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.

Citations

Citations to this article as recorded by  Crossref logo
  • Ultrasensitive and rapid diagnostic tool for detection of Acanthamoeba castellanii
    Susanna Haapanen, Maarit S. Patrikainen, Seppo Parkkila
    Diagnostic Microbiology and Infectious Disease.2023; 107(2): 116014.     CrossRef
  • A simple and visible detection method for the rapid diagnosis of Ustilaginoidea virens in rice seeds by a loop‐mediated isothermal amplification assay
    Wei Wang, Hang Yin, Ning Huang, Cuijing Zhu, Yufei Wang, Xintong Qi, Lu Ma, Yunxin Fan, Yao Yu, Hongsheng Zhang, Yongmei Bao
    Journal of Phytopathology.2021; 169(6): 369.     CrossRef
  • Efficient nested-PCR-based method development for detection and genotype identification of Acanthamoeba from a small volume of aquatic environmental sample
    Tsui-Kang Hsu, Jung-Sheng Chen, Hsin-Chi Tsai, Chi-Wei Tao, Yu-Yin Yang, Ying-Chin Tseng, Yi-Jie Kuo, Dar-Der Ji, Jagat Rathod, Bing-Mu Hsu
    Scientific Reports.2021;[Epub]     CrossRef
  • Development of Visually Improved Loop Mediated Isothermal Amplification for the Diagnosis of Plasmodium vivax Malaria in a Tertiary Hospital in Chandigarh, North India
    Hargobinder Kaur, Rakesh Sehgal, Devendra Bansal, Ali A. Sultan, Ashish Bhalla, Sunit C. Singhi
    The American Journal of Tropical Medicine and Hygiene.2018; 98(5): 1374.     CrossRef
  • Detection of Acanthamoeba spp. in water samples collected from natural water reservoirs, sewages, and pharmaceutical factory drains using LAMP and PCR in China
    Anna Lass, Milena Guerrero, Xiuping Li, Gabriele Karanis, Liqing Ma, Panagiotis Karanis
    Science of The Total Environment.2017; 584-585: 489.     CrossRef
  • Water-borne protozoa parasites: The Latin American perspective
    Félix Manuel Rosado-García, Milena Guerrero-Flórez, Gabriele Karanis, María Del Carmen Hinojosa, Panagiotis Karanis
    International Journal of Hygiene and Environmental Health.2017; 220(5): 783.     CrossRef
  • Evaluation of Loop-mediated Isothermal Amplification Assay for Rapid Diagnosis of Acanthamoeba Keratitis
    Abhishek Mewara, Sumeeta Khurana, Shakila Yoonus, Kirti Megha, Parveen Tanwar, Amit Gupta, Rakesh Sehgal
    Indian Journal of Medical Microbiology.2017; 35(1): 90.     CrossRef
  • Acanthamoeba keratitis: improving the Scottish diagnostic service for the rapid molecular detection of Acanthamoeba species
    Claire Low Alexander, Michael Coyne, Brian Jones, Deepa Anijeet
    Journal of Medical Microbiology .2015; 64(7): 682.     CrossRef
  • Molecular diagnosis in clinical parasitology: When and why?
    Samson SY Wong, Kitty SC Fung, Sandy Chau, Rosana WS Poon, Sally CY Wong, Kwok-Yung Yuen
    Experimental Biology and Medicine.2014; 239(11): 1443.     CrossRef
  • 11,275 View
  • 96 Download
  • Crossref

Mini Review

Molecular Phylogeny of Acanthamoeba
Hyun Hee Kong
Korean J Parasitol 2009;47(Suppl):S21.
Published online October 26, 2009
DOI: https://doi.org/10.3347/kjp.2009.47.S.S21

After morphological grouping of Acanthamoeba by Pussard and Pons, phylogeny of the genus has been always a big topic to the researchers. Because of the variability of morphological characteristics, unchangeable and stable characters have been investigated for phylogenic criteria. Isoenzyme and mitochondrial DNA RFLP (Mt DNA RFLP) analyses revealed different patterns among strains assigned to a same species. Therefore, these characteristics would be considered as tools for strain discrimination than species identification. The most recently developed and the most promising method is the sequence analysis of 18s ribosomal RNA coding DNA (18s rDNA). The phylogenic tree based on comparison of 18s rDNA sequences distinguished the 3 morphological groups of Acanthamoeba and divided them into 12 unique sequence types (T1-T12 genotypes). Most clinical and environmental isolates belonged to the morphological group II and the genotype T4. In the Republic of Korea, 2 strains of Acanthamoeba, YM-2 and YM-3, were first isolated from the environment in 1974. However, phylogenic identification of Korean Acanthamoeba isolates from human infections or the environment were tried from the late 1990s. By RFLP analysis or total sequence analysis of 18s rDNA revealed that almost all clinical isolates including the one from a suspicious granulomatous amebic encephalitis patient belonged to the genotype T4. A large number of environmental isolates from contact lens storage cases, tapped water, and ocean sediments also belonged to the genotype T4. Almost identical strain characteristics, such as Mt DNA RFLP pattern of environmental isolates, with the clinical isolates could make a simple conclusion that most environmental isolates might be a potential keratopathogen.

Citations

Citations to this article as recorded by  Crossref logo
  • Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis
    Muhammad Ilyas, Fiona Stapleton, Mark D. P. Willcox, Fiona Henriquez, Hari Kumar Peguda, Binod Rayamajhee, Tasbiha Zahid, Constantinos Petsoglou, Nicole A. Carnt
    Pathogens.2024; 13(2): 142.     CrossRef
  • A Narrative Review of Acanthamoeba Isolates in Malaysia: Challenges in Infection Management and Natural Therapeutic Advancements
    Mohammad Wisman Abdul Hamid, Roslaini Bin Abd Majid, Victor Fiezal Knight Victor Ernest, Nik Noorul Shakira Mohamed Shakrin, Firdaus Mohamad Hamzah, Mainul Haque
    Cureus.2024;[Epub]     CrossRef
  • Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer
    Rohaya Abdul Halim, Hasseri Halim, Rosnani Hanim Mohd Hussain, Shafiq Aazmi, Naveed Ahmed Khan, Ruqaiyyah Siddiqui, Tengku Shahrul Anuar
    Journal of Water and Health.2024; 22(12): 2289.     CrossRef
  • Biological characteristics and pathogenicity of Acanthamoeba
    Yuehua Wang, Linzhe Jiang, Yitong Zhao, Xiaohong Ju, Le Wang, Liang Jin, Ryan D. Fine, Mingguang Li
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Shotgun Kinetic Target-Guided Synthesis Approach Enables the Discovery of Small-Molecule Inhibitors against Pathogenic Free-Living Amoeba Glucokinases
    Mintesinot Kassu, Prakash T. Parvatkar, Jillian Milanes, Neil P. Monaghan, Chungsik Kim, Matthew Dowgiallo, Yingzhao Zhao, Ami H. Asakawa, Lili Huang, Alicia Wagner, Brandon Miller, Karissa Carter, Kayleigh F. Barrett, Logan M. Tillery, Lynn K. Barrett, I
    ACS Infectious Diseases.2023; 9(11): 2190.     CrossRef
  • Molecular detection of free-living amoebae from Namhangang (southern Han River) in Korea
    Heekyoung Kang, Hae-Jin Sohn, Ga-Eun Seo, Gi-Sang Seong, A-Jeong Ham, A-Young Park, Suk-Yul Jung, Sang-Eun Lee, Shin-Hyeong Cho, Ho-Joon Shin
    Scientific Reports.2020;[Epub]     CrossRef
  • Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea)
    Stas Malavin, Lyubov Shmakova
    European Journal of Protistology.2020; 73: 125671.     CrossRef
  • Isolation and molecular characterization of Acanthamoeba from patients with keratitis in Spain
    T. Martín-Pérez, A. Criado-Fornelio, J. Martínez, M.A. Blanco, I. Fuentes, J. Pérez-Serrano
    European Journal of Protistology.2017; 61: 244.     CrossRef
  • Free-living amoebae in the water resources of Iran: a systematic review
    Ehsan Saburi, Toktam Rajaii, Asma Behdari, Mohammad Hasan Kohansal, Hossein Vazini
    Journal of Parasitic Diseases.2017; 41(4): 919.     CrossRef
  • Genotyping of Acanthamoeba spp. from water sources from Northwestern Iran
    Ali Haniloo, Ali Pezeshki, Abbas Mahmmodzadeh, Elnaz Kadkhodamohammadi
    Acta Parasitologica.2017;[Epub]     CrossRef
  • Pathogenic free-living amoeba
    Natalia Łanocha-Arendarczyk, Danuta Kosik-Bogacka, Katarzyna Galant, Wojciech Zaorski, Karolina Kot, Aleksandra Łanocha
    Postępy Mikrobiologii - Advancements of Microbiology.2017; 56(1): 106.     CrossRef
  • Metacommunity analysis of amoeboid protists in grassland soils
    Anna Maria Fiore-Donno, Jan Weinert, Tesfaye Wubet, Michael Bonkowski
    Scientific Reports.2016;[Epub]     CrossRef
  • Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt
    Gihan Mostafa Tawfeek, Sawsan Abdel-Hamid Bishara, Rania Mohammad Sarhan, Eman ElShabrawi Taher, Amira ElSaady Khayyal
    Parasitology Research.2016; 115(5): 1871.     CrossRef
  • Incidence and molecular diversity of Acanthamoeba species isolated from public baths in Hungary
    Csaba Kiss, Zsófia Barna, Márta Vargha, Júlia Katalin Török
    Parasitology Research.2014; 113(7): 2551.     CrossRef
  • Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA
    Md Moshiur Rahman, Kenji Yagita, Akira Kobayashi, Yosaburo Oikawa, Amjad I.A. Hussein, Takahiro Matsumura, Masaharu Tokoro
    The Korean Journal of Parasitology.2013; 51(4): 401.     CrossRef
  • Occurrence and characterization of Acanthamoeba similar to genotypes T4, T5, and T2/T6 isolated from environmental sources in Brasília, Federal District, Brazil
    Daniella de Sousa Mendes Moreira Alves, Aline Silva Moraes, Nadjar Nitz, Mayara Gabriele Carvalho de Oliveira, Mariana Machado Hecht, Rodrigo Gurgel-Gonçalves, César Augusto Cuba Cuba
    Experimental Parasitology.2012; 131(2): 239.     CrossRef
  • Exploring the Unique N-Glycome of the Opportunistic Human Pathogen Acanthamoeba
    Birgit Schiller, Georgia Makrypidi, Ebrahim Razzazi-Fazeli, Katharina Paschinger, Julia Walochnik, Iain B.H. Wilson
    Journal of Biological Chemistry.2012; 287(52): 43191.     CrossRef
  • Comparison of molecular diagnostic methods for the detection of Acanthamoeba spp. from clinical specimens submitted for keratitis
    Krishna Khairnar, Gurdip S. Tamber, Filip Ralevski, Dylan R. Pillai
    Diagnostic Microbiology and Infectious Disease.2011; 70(4): 499.     CrossRef
  • 19,243 View
  • 194 Download
  • Crossref
Original Articles
Molecular characterization of bacterial endosymbionts of Acanthamoeba isolates from infected corneas of Korean patients
Ying-Hua Xuan, Hak Sun Yu, Hae Jin Jeong, Sung-Yong Seol, Dong-Il Chung, Hyun-Hee Kong
Korean J Parasitol 2007;45(1):1-9.
Published online March 20, 2007
DOI: https://doi.org/10.3347/kjp.2007.45.1.1

The endosymbionts of 4 strains of Acanthamoeba (KA/E9, KA/E21, KA/E22, and KA/E23) isolated from the infected corneas of Korean patients were characterized via orcein stain, transmission electron microscopic examination, and 16S rDNA sequence analysis. Double membrane-bound, rod-shaped endosymbionts were distributed randomly throughout both the trophozoites and cysts of each of Acanthamoeba isolates. The endosymbionts of KA/E9, KA/E22, and KA/E23 were surrounded by electron-translucent areas. No lacunae-like structures were observed in the endosymbionts of KA/E21, the bacterial cell walls of which were studded with host ribosomes. Comparative analyses of the 16S rDNA sequences showed that the endosymbionts of KA/E9, KA/E22 and KA/E23 were closely related to Caedibacter caryophilus, whereas the KA/E21 endosymbiont was assigned to the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum. In the 4 strains of Acanthamoeba, the hosts of the endosymbionts were identified as belonging to the Acanthamoeba castellanii complex, which corresponds to the T4 genotype. Acanthamoeba KA/E21 evidenced characteristics almost identical to those of KA/E6, with the exception of the existence of endosymbionts. The discovery of these endosymbionts from Acanthamoeba may prove essential to future studies focusing on interactions between the endosymbionts and the amoebic hosts.

Citations

Citations to this article as recorded by  Crossref logo
  • Proteases of Acanthamoeba
    Behroz Mahdavi Poor, Jalil Rashedi, Vahid Asgharzadeh, Amirali Mirmazhary, Nazila Gheitarani
    Parasitology Research.2024;[Epub]     CrossRef
  • Presence and diversity of free-living amoebae and their potential application as water quality indicators
    Areum Choi, Ji Won Seong, Jeong Hyun Kim, Jun Young Lee, Hyun Jae Cho, Shin Ae Kang, Mi Kyung Park, Mi Jin Jeong, Seo Yeong Choi, Yu Jin Jeong, Hak Sun Yu
    Parasites, Hosts and Diseases.2024; 62(2): 180.     CrossRef
  • Contamination of fresh vegetables in municipal stores with pathogenic Acanthamoeba genotypes; a public health concern
    Marziye Fatemi, Maryam Niyyati, Soheila Rouhani, Seyed Ahmad Karamati, Hamed Mirjalali, Panagiotis Karanis
    International Journal of Environmental Health Research.2023; 33(10): 1010.     CrossRef
  • The life cycle-dependent transcriptional profile of the obligate intracellular amoeba symbiontAmoebophilus asiaticus
    E Selberherr, T Penz, L König, B Conrady, A Siegl, M Horn, S Schmitz-Esser
    FEMS Microbiology Ecology.2022;[Epub]     CrossRef
  • A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection
    Binod Rayamajhee, Dinesh Subedi, Hari Kumar Peguda, Mark Duncan Willcox, Fiona L. Henriquez, Nicole Carnt
    Pathogens.2021; 10(2): 225.     CrossRef
  • Molecular characterization of bacterial, viral and fungal endosymbionts of Acanthamoeba isolates in keratitis patients of Iran
    Elham Hajialilo, Mostafa Rezaeian, Maryam Niyyati, Mohammad Reza Pourmand, Mehdi Mohebali, Mehdi Norouzi, Kobra Razavi Pashabeyg, Sassan Rezaie, Sadegh Khodavaisy
    Experimental Parasitology.2019; 200: 48.     CrossRef
  • Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4
    Daniele Corsaro, Danielle Venditti
    European Journal of Protistology.2018; 66: 26.     CrossRef
  • Molecular identification of bacterial endosymbionts of Sappinia strains
    Daniele Corsaro, Claudia Wylezich, Julia Walochnik, Danielle Venditti, Rolf Michel
    Parasitology Research.2017; 116(2): 549.     CrossRef
  • Identification of Paenibacillus as a Symbiont in Acanthamoeba
    Vinicius José Maschio, Gertrudes Corção, Francielle Bücker, Karin Caumo, Marilise Brittes Rott
    Current Microbiology.2015; 71(3): 415.     CrossRef
  • Identifying endosymbiont bacteria associated with free‐living amoebae
    Pilar Goñi, María Teresa Fernández, Encarnación Rubio
    Environmental Microbiology.2014; 16(2): 339.     CrossRef
  • Acanthamoeba castellanii cysts: new ultrastructural findings
    Bibiana Chávez-Munguía, Lizbeth Salazar-Villatoro, Anel Lagunes-Guillén, Maritza Omaña-Molina, Martha Espinosa-Cantellano, Adolfo Martínez-Palomo
    Parasitology Research.2013; 112(3): 1125.     CrossRef
  • Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii
    Jung-Yeon Kim, Byoung-Kuk Na, Kyoung-Ju Song, Mi-Hyun Park, Yun-Kyu Park, Tong-Soo Kim
    Parasitology Research.2012; 111(4): 1673.     CrossRef
  • A bacterial genome in transition - an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus
    Stephan Schmitz-Esser, Thomas Penz, Anja Spang, Matthias Horn
    BMC Evolutionary Biology.2011;[Epub]     CrossRef
  • Is Acanthamoeba pathogenicity associated with intracellular bacteria?
    Graeme Neil Paterson, Michael Rittig, Ruqaiyyah Siddiqui, Naveed Ahmed Khan
    Experimental Parasitology.2011; 129(2): 207.     CrossRef
  • Detection of Bacterial Endosymbionts in Clinical Acanthamoeba Isolates
    Alfonso Iovieno, Dolena R. Ledee, Darlene Miller, Eduardo C. Alfonso
    Ophthalmology.2010; 117(3): 445.     CrossRef
  • Bilateral Acanthamoeba Keratitis After Orthokeratology
    Eun Chul Kim, Man Soo Kim
    Cornea.2010; 29(6): 680.     CrossRef
  • Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality
    Vincent Thomas, Gerald McDonnell, Stephen P. Denyer, Jean-Yves Maillard
    FEMS Microbiology Reviews.2010; 34(3): 231.     CrossRef
  • Bilateral Acanthamoeba Keratitis After Orthokeratology
    Eun Chul Kim, Man Soo Kim
    Cornea.2009; 28(3): 348.     CrossRef
  • Keratitis by Acanthamoeba triangularis: Report of Cases and Characterization of Isolates
    Ying-Hua Xuan, Byung-Suk Chung, Yeon-Chul Hong, Hyun-Hee Kong, Tae-Won Hahn, Dong-Il Chung
    The Korean Journal of Parasitology.2008; 46(3): 157.     CrossRef
  • Diversity of Bacterial Endosymbionts of Environmental Acanthamoeba Isolates
    Stephan Schmitz-Esser, Elena R. Toenshoff, Susanne Haider, Eva Heinz, Verena M. Hoenninger, Michael Wagner, Matthias Horn
    Applied and Environmental Microbiology.2008; 74(18): 5822.     CrossRef
  • 10,049 View
  • 94 Download
  • Crossref
Molecular characterization of Acanthamoeba isolated from amebic keratitis related to orthokeratology lens overnight wear
Sun Joo Lee, Hae Jin Jeong, Ji Eun Lee, Jong Soo Lee, Ying Hua Xuan, Hyun-Hee Kong, Dong-Il Chung, Mee-Sun Ock, Hak Sun Yu
Korean J Parasitol 2006;44(4):313-320.
Published online December 20, 2006
DOI: https://doi.org/10.3347/kjp.2006.44.4.313

In an effort to characterize, on the molecular scale, the Acanthamoeba initially isolated from the cornea of an amoebic keratitis patient associated with overnight-wear orthokeratology lens in Korea, we conducted mitochondrial DNA restriction fragment length polymorphism, 18S rDNA sequencing, and drug sensitivity analyses on the isolate (KA/PE1). The patient was treated with polyhexamethylene biguanide, chlorhexidine and oral itraconazole, which resulted in resolution of the patient's ocular inflammation. The majority of the molecular characteristics of the KA/PE1 were determined to be identical, or quite similar, to those of A. castellanii Ma strain, which had been isolated also from amoebic keratitis. The risk of Acanthamoeba keratitis as a potential complication of overnight orthokeratology is briefly discussed.

Citations

Citations to this article as recorded by  Crossref logo
  • Free-Living Amoeba Vermamoeba vermiformis Induces Allergic Airway Inflammation
    Da-In Lee, Sung Hee Park, Shin-Ae Kang, Do Hyun Kim, Sun Hyun Kim, So Yeon Song, Sang Eun Lee, Hak Sun Yu
    The Korean Journal of Parasitology.2022; 60(4): 229.     CrossRef
  • Orthokeratology lens-related Acanthamoeba keratitis: case report and analytical review
    Jinfang Wu, Huatao Xie
    Journal of International Medical Research.2021;[Epub]     CrossRef
  • Infectious keratitis and orthokeratology lens use: a systematic review
    Ka Wai Kam, Wing Yung, Gabriel Ka Hin Li, Li Jia Chen, Alvin L. Young
    Infection.2017; 45(6): 727.     CrossRef
  • The Role of Ultraviolet Radiation in the Ocular System of Mammals
    Mercede Majdi, Behrad Milani, Asadolah Movahedan, Lisa Wasielewski, Ali Djalilian
    Photonics.2014; 1(4): 347.     CrossRef
  • Orthokeratology lens related infections
    Kelvin Ho-Nam Wan
    World Journal of Ophthalmology.2014; 4(3): 63.     CrossRef
  • Riboflavin and Ultraviolet Light A Therapy as an Adjuvant Treatment for Medically Refractive Acanthamoeba Keratitis
    Yasin A. Khan, Renata T. Kashiwabuchi, Suy Anne Martins, Juan M. Castro-Combs, Sachin Kalyani, Philip Stanley, David Flikier, Ashley Behrens
    Ophthalmology.2011; 118(2): 324.     CrossRef
  • Bilateral Acanthamoeba Keratitis After Orthokeratology
    Eun Chul Kim, Man Soo Kim
    Cornea.2010; 29(6): 680.     CrossRef
  • Twenty Years of Acanthamoeba Keratitis
    F R S Carvalho, A S Foronda, M J Mannis, A L Höfling-Lima, R Belfort, Denise de Freitas
    Cornea.2009; 28(5): 516.     CrossRef
  • Molecular Phylogeny of Acanthamoeba
    Hyun Hee Kong
    The Korean Journal of Parasitology.2009; 47(Suppl): S21.     CrossRef
  • Bilateral Acanthamoeba Keratitis After Orthokeratology
    Eun Chul Kim, Man Soo Kim
    Cornea.2009; 28(3): 348.     CrossRef
  • Trends in Microbial Keratitis Associated With Orthokeratology
    Kathleen G. Watt, Helen A. Swarbrick
    Eye & Contact Lens: Science & Clinical Practice.2007; 33(6): 373.     CrossRef
  • 14,053 View
  • 110 Download
  • Crossref
Genetic diversity of Acanthamoeba isolates from ocean sediments
Hua Liu, Young-Ran Ha, Sung-Tae Lee, Yean-Chul Hong, Hyun-Hee Kong, Dong-Il Chung
Korean J Parasitol 2006;44(2):117-125.
Published online June 20, 2006
DOI: https://doi.org/10.3347/kjp.2006.44.2.117

Genetic diversity of 18 Acanthamoeba isolates from ocean sediments was evaluated by comparing mitochondrial (mt) DNA RFLP, 18S rDNA sequences and by examining their cytopathic effects on human corneal epithelial cells versus reference strains. All isolates belonged to morphologic group II. Total of 16 restriction phenotypes of mtDNA from 18 isolates demonstrated the genetic diversity of Acanthamoeba in ocean sediments. Phylogenetic analysis using 18s rDNA sequences revealed that the 18 isolates were distinct from morphological groups I and III. Fifteen isolates showed close relatedness with 17 clinical isolates and A. castellanii Castellani and formed a lineage equivalent to T4 genotype of Byers' group. Two reference strains from ocean sediment, A. hatchetti BH-2 and A. griffini S-7 clustered unequivocally with these 15 isolates. Diversity among isolates was also evident from their cytopathic effects on human corneal cells. This is the first time describing Acanthamoeba diversity in ocean sediments in Korea.

Citations

Citations to this article as recorded by  Crossref logo
  • Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group
    Daniele Corsaro
    Microorganisms.2024; 12(10): 2105.     CrossRef
  • The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections
    Paul A. Fuerst
    Microorganisms.2023; 11(2): 295.     CrossRef
  • Detection of potentially pathogenic free-living amoebae from the Caspian Sea and hospital ward dust of teaching hospitals in Guilan, Iran
    Mohammad Reza Mahmoudi, Nozhat Zebardast, Frederick R. Masangkay, Panagiotis Karanis
    Journal of Water and Health.2021; 19(2): 278.     CrossRef
  • Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea)
    Stas Malavin, Lyubov Shmakova
    European Journal of Protistology.2020; 73: 125671.     CrossRef
  • Isolation and identification of free-living amoeba from the hot springs and beaches of the Caspian Sea
    Alireza Latifi, Mahboobeh Salami, Elham Kazemirad, Mohammad Soleimani
    Parasite Epidemiology and Control.2020; 10: e00151.     CrossRef
  • Update on Acanthamoeba phylogeny
    Daniele Corsaro
    Parasitology Research.2020; 119(10): 3327.     CrossRef
  • Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4
    Daniele Corsaro, Danielle Venditti
    European Journal of Protistology.2018; 66: 26.     CrossRef
  • Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater
    Penelope H. Dobrowsky, Sehaam Khan, Thomas E. Cloete, Wesaal Khan
    Parasites & Vectors.2016;[Epub]     CrossRef
  • Metagenomic characterization of viral communities in Goseong Bay, Korea
    Jinik Hwang, So Yun Park, Mirye Park, Sukchan Lee, Yeonhwa Jo, Won Kyong Cho, Taek-Kyun Lee
    Ocean Science Journal.2016; 51(4): 599.     CrossRef
  • Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes
    Nadège Philippe, Matthieu Legendre, Gabriel Doutre, Yohann Couté, Olivier Poirot, Magali Lescot, Defne Arslan, Virginie Seltzer, Lionel Bertaux, Christophe Bruley, Jérome Garin, Jean-Michel Claverie, Chantal Abergel
    Science.2013; 341(6143): 281.     CrossRef
  • Mycobacterium gilvum Illustrates Size-Correlated Relationships between Mycobacteria and Acanthamoeba polyphaga
    Otmane Lamrabet, Michel Drancourt
    Applied and Environmental Microbiology.2013; 79(5): 1606.     CrossRef
  • Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida)
    Daniele Corsaro, Danielle Venditti
    Parasitology Research.2010; 107(1): 233.     CrossRef
  • Barcoding Amoebae: Comparison of SSU, ITS and COI Genes as Tools for Molecular Identification of Naked Lobose Amoebae
    Elena Nassonova, Alexey Smirnov, Jose Fahrni, Jan Pawlowski
    Protist.2010; 161(1): 102.     CrossRef
  • Molecular Phylogeny of Acanthamoeba
    Hyun Hee Kong
    The Korean Journal of Parasitology.2009; 47(Suppl): S21.     CrossRef
  • Biodiversity of amoebae and amoebae‐resisting bacteria in a drinking water treatment plant
    Vincent Thomas, Jean‐François Loret, Michel Jousset, Gilbert Greub
    Environmental Microbiology.2008; 10(10): 2728.     CrossRef
  • Relationship between mycobacteria and amoebae: ecological and epidemiological concerns
    V. Thomas, G. McDonnell
    Letters in Applied Microbiology.2007; 45(4): 349.     CrossRef
  • 9,589 View
  • 70 Download
  • Crossref
Evaluation of taxonomic validity of four species of Acanthamoeba: A. divionensis, A. paradivionensis, A. mauritaniensis, and A. rhysodes, inferred from molecular analyses
Hua Liu, Eun-Kyung Moon, Hak-Sun Yu, Hae-Jin Jeong, Yeon-Chul Hong, Hyun-Hee Kong, Dong-Il Chung
Korean J Parasitol 2005;43(1):7-13.
Published online March 20, 2005
DOI: https://doi.org/10.3347/kjp.2005.43.1.7

The taxonomy of Acanthamoeba spp., an amphizoic amoeba which causes granulomatous amoebic encephalitis and chronic amoebic keratitis, has been revised many times. The taxonomic validity of some species has yet to be assessed. In this paper, we analyzed the morphological characteristics, nuclear 18s rDNA and mitochondrial 16s rDNA sequences and the Mt DNA RFLP of the type strains of four Acanthamoeba species, which had been previously designated as A. divionensis, A. parasidionensis, A. mauritaniensis, and A. rhysodes. The four isolates revealed characteristic group II morphology. They exhibited 18S rDNA sequence differences of 0.2-1.1% with each other, but more than 2% difference from the other compared reference strains. Four isolates formed a different clade from that of A. castellanii Castellani and the other strains in morphological group II on the phylogenetic tree. In light of these results, A. paradivionensis, A. divionensis, and A. mauritaniensis should be regarded as synonyms for A. rhysodes.

Citations

Citations to this article as recorded by  Crossref logo
  • The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections
    Paul A. Fuerst
    Microorganisms.2023; 11(2): 295.     CrossRef
  • On the diversity and clinical importance of Acanthamoeba spp. from Group 1
    Daniele Corsaro
    Parasitology Research.2021; 120(6): 2057.     CrossRef
  • Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea)
    Stas Malavin, Lyubov Shmakova
    European Journal of Protistology.2020; 73: 125671.     CrossRef
  • Update on Acanthamoeba phylogeny
    Daniele Corsaro
    Parasitology Research.2020; 119(10): 3327.     CrossRef
  • Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA
    Md Moshiur Rahman, Kenji Yagita, Akira Kobayashi, Yosaburo Oikawa, Amjad I.A. Hussein, Takahiro Matsumura, Masaharu Tokoro
    The Korean Journal of Parasitology.2013; 51(4): 401.     CrossRef
  • Isolation and characterization of Acanthamoeba spp. from air-conditioners in Kuala Lumpur, Malaysia
    Li-Li Chan, Joon-Wah Mak, Yoon-Tong Low, Thuan-Tzen Koh, Init Ithoi, Shar Mariam Mohamed
    Acta Tropica.2011; 117(1): 23.     CrossRef
  • Keratitis by Acanthamoeba triangularis: Report of Cases and Characterization of Isolates
    Ying-Hua Xuan, Byung-Suk Chung, Yeon-Chul Hong, Hyun-Hee Kong, Tae-Won Hahn, Dong-Il Chung
    The Korean Journal of Parasitology.2008; 46(3): 157.     CrossRef
  • Acanthamoeba keratitis due to Acanthamoeba genotype T4 in a non-contact-lens wearer in Turkey
    Hatice Ertabaklar, Meral Türk, Volkan Dayanir, Sema Ertuğ, Julia Walochnik
    Parasitology Research.2007; 100(2): 241.     CrossRef
  • 8,760 View
  • 78 Download
  • Crossref