Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

13
results for

"mitochondrial genome"

Article category

Keywords

Publication year

Authors

Funded articles

"mitochondrial genome"

Original Articles

Complete mitogenome sequence of Caryophyllaeus brachycollis (Cestoda: Caryophyllidae) from China: Characterization and phylogenetic analyses of Caryophyllidea
Yi-Liu Liu, Ya Zhang, Yi-Tian Fu, Guo-Hua Liu, Hui-Mei Wang, Yuan-Ping Deng
Parasites Hosts Dis 2025;63(4):317-326.
Published online November 19, 2025
DOI: https://doi.org/10.3347/PHD.25044
Caryophyllaeus brachycollis mainly parasitizes the intestines of globally distributed freshwater fishes, and infection causes significant economic losses to the aquaculture industry. However, data on the molecular epidemiology, population genetics, and systematics of C. brachycollis are scarce. In this study, we sequenced the complete mitogenome of C. brachycollis isolated from Beijing, China. This circular mitogenome comprised 14,273 bp, which was 231 bp shorter than that of C. brachycollis isolated from Wuhan, China. The mitogenome contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 2 noncoding regions. Bayesian inference revealed that C. brachycollis belonged to the family Caryophyllaeidae. The taxonomic status of C. brachycollis is controversial when based solely on morphological features. A comparative analysis of the mitogenome sequence obtained in this study revealed novel molecular markers for the accurate ascertainment of the phylogenetic position of this parasite.
  • 288 View
  • 17 Download
Morphology and Mitochondrial Genome of Fischoederius sp. 1 in Thailand
Pichanee Watthanasiri, Amornrat Geadkaew-Krenc, Rudi Grams
Korean J Parasitol 2021;59(4):355-362.
Published online August 18, 2021
DOI: https://doi.org/10.3347/kjp.2021.59.4.355
A rumen fluke Fischoederius elongatus is assigned to the type species of genus Fischoederius, family Gastrothylacidae. However, the mitochondrial sequences recently published are thought to be of inconsistent species, suggesting that several morphologically similar but genetically distinct species might be classified as Fischoederius elongatus. Thus, mentions of F. elongatus from South, Southeast, and East Asia might unintentionally refer to different species. The present work describes morphology and a full mitochondrial genome sequence of one of these species. The fluke specimens were collected from 2 infected cattle in Thailand. An interesting finding was the presence of a second tRNA-Asp gene next to a partial ND1 gene. It is suggested that these duplicated sequences are the remnants of non-reciprocal recombination events caused by inverted repeats located between ND2 and ND1 mitochondrial genes.

Citations

Citations to this article as recorded by  Crossref logo
  • Morphological Observation and Detailed Molecular Characterization of Fischoederius elongatus (Digenea: Gastrothylacidae) from the Rumen of Domestic Cattle in Cambodia
    Chinda Wann, Bengthay Tep, Witaya Suriyasathaporn, Yasuhiro Morita, Vutha Pheng, Satoshi Ohkura, Shuichi Matsuyama, Sho Nakamura, Kei Hayashi
    Journal of Parasitology.2025;[Epub]     CrossRef
  • The complete mitochondrial genome of Aspidogaster ijimai (Platyhelminthes: Trematoda: Aspidogastrea): gene content and phylogenetic inference
    D. A. Solodovnik, D. M. Atopkin, A. A. Semenchenko, M. Urabe, S. G. Sokolov
    Invertebrate Zoology.2025; 22(3): 411.     CrossRef
  • Differentiating paramphistome species in cattle using DNA barcoding coupled with high-resolution melting analysis (Bar-HRM)
    Kittisak Buddhachat, Sirikhwan Sriuan, Sirapat Nak-on, Thapana Chontananarth
    Parasitology Research.2023; 122(3): 769.     CrossRef
  • The determination and relationship of four coexisting paramphistomes in perspective of integrative taxonomic investigation
    Sirapat Nak-on, Thapana Chontananarth
    Veterinary Parasitology: Regional Studies and Reports.2023; 40: 100849.     CrossRef
  • 6,564 View
  • 107 Download
  • 3 Web of Science
  • Crossref

Brief Communications

Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis)
Rongkun Ran, Qi Zhao, Asmaa M. I. Abuzeid, Yue Huang, Yunqiu Liu, Yongxiang Sun, Long He, Xiu Li, Jumei Liu, Guoqing Li
Korean J Parasitol 2020;58(1):73-79.
Published online February 29, 2020
DOI: https://doi.org/10.3347/kjp.2020.58.1.73
Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteritis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolutum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT preference. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E. miyagawai clustered together, belonging to Echinostomatidae with Hypoderaeum conoideum. This study may enrich the mitochondrial gene database of Echinostoma trematodes and provide valuable data for studying the molecular identification and phylogeny of some digenean trematodes.

Citations

Citations to this article as recorded by  Crossref logo
  • The Nuclear Ribosomal Transcription Units of Two Echinostomes and Their Taxonomic Implications for the Family Echinostomatidae
    Yu Cao, Ye Li, Zhong-Yan Gao, Bo-Tao Jiang
    Biology.2025; 14(8): 1101.     CrossRef
  • Phylogeny and morphology of some Palearctic echinostomatid digeneans from rallid bird Fulica atra Linnaeus, 1758
    Sergei A. Vlasenkov, Mikhail Yu. Shchelkanov, Sergey G. Sokolov
    Biologia.2025; 80(11): 3079.     CrossRef
  • The complete mitochondrial genome of Aspidogaster ijimai (Platyhelminthes: Trematoda: Aspidogastrea): gene content and phylogenetic inference
    D. A. Solodovnik, D. M. Atopkin, A. A. Semenchenko, M. Urabe, S. G. Sokolov
    Invertebrate Zoology.2025; 22(3): 411.     CrossRef
  • Molecular and morphological support for the synonymy of Nephrostomum and Patagifer: discovery of new species and broad geographic connections
    María G. Díaz González, Danimar López-Hernández, Vasyl V. Tkach, Fabiana Drago, Fred D. Chibwana, Martina R. Laidemitt, Christopher A. Blanar, Verónica Núñez, Mariano Dueñas Díaz, Luis A. Gomez-Puerta, Sean A. Locke
    International Journal for Parasitology.2025;[Epub]     CrossRef
  • First molecular insights into gastrointestinal helminths of domestic birds in the Caspian Sea Littoral of Iran with an emphasis on the One Health concern
    Aida Vafae Eslahi, Majid Pirestani, Armin Aligolzadeh, Oskar Nowak, Elham Hajialilo, Pourya Fathollahzadeh, Fahimeh Hajiaghaee, Milad Badri, Luís Manuel Madeira de Carvalho
    Veterinary Parasitology: Regional Studies and Reports.2024; 51: 101035.     CrossRef
  • Development and utilization of a visual loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay for rapid detection of Echinostomatidae metacercaria in edible snail samples
    Wasin Panich, Phonkawin Jaruboonyakorn, Awika Raksaman, Thanawan Tejangkura, Thapana Chontananarth
    International Journal of Food Microbiology.2024; 418: 110732.     CrossRef
  • A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences
    D. M. Atopkin, A. A. Semenchenko, D. A. Solodovnik, Y. I. Ivashko
    Journal of Helminthology.2023;[Epub]     CrossRef
  • Fecal DNA metabarcoding reveals the dietary composition of wintering Red-crowned Cranes (Grus japonensis)
    Hongyi Liu, Wei Xu, Nan Xu, Wenwen Zhang, Haoming Jiang, Yongqiang Zhao, Changhu Lu, Ying Zhu, Peng Xu
    Avian Research.2023; 14: 100145.     CrossRef
  • Mitophylogenomics of the zoonotic fluke Echinostoma malayanum confirms it as a member of the genus Artyfechinostomum Lane, 1915 and illustrates the complexity of Echinostomatidae systematics
    Linh Thi Khanh Pham, Weerachai Saijuntha, Scott P. Lawton, Thanh Hoa Le
    Parasitology Research.2022; 121(3): 899.     CrossRef
  • Characterization of complete mitochondrial genome and ribosomal operon forCarassotrema koreanumPark, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data
    Y.I. Ivashko, A.A. Semenchenko, D.A. Solodovnik, D.M. Atopkin
    Journal of Helminthology.2022;[Epub]     CrossRef
  • The Ponto-Caspian parasite Plagioporus cf. skrjabini reaches the River Rhine system in Central Europe: higher infestation in the native than in the introduced Danubian form of the gastropod Theodoxus fluviatilis
    Louisa Marie Rothmeier, René Sahm, Burkard Watermann, Karsten Grabow, Meike Koester, Anna Cichy, Andreas Martens
    Hydrobiologia.2021; 848(10): 2569.     CrossRef
  • Occurrence of echinostomatoids (Platyhelminthes: Digenea) in Great Cormorant (Phalacrocorax carbo) and Grey Heron (Ardea cinerea): first insights into the DNA barcodes from Lake Victoria, Tanzania
    Fred Chibwana, Jestina Katandukila
    African Zoology.2021; 56(3): 181.     CrossRef
  • The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus)
    Qi Zhao, Asmaa M.I. Abuzeid, Long He, Tingting Zhuang, Xiu Li, Jumei Liu, Shilan Zhu, Xiaoyu Chen, Guoqing Li
    Parasitology International.2021; 85: 102434.     CrossRef
  • 7,068 View
  • 120 Download
  • 12 Web of Science
  • Crossref
Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens
Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee, Seongjun Choe, Yeseul Kang, Mohammed Mebarek Bia, Sang-Hwa Lee, Keeseon S. Eom
Korean J Parasitol 2019;57(1):55-60.
Published online February 26, 2019
DOI: https://doi.org/10.3347/kjp.2019.57.1.55
This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (GenBank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.

Citations

Citations to this article as recorded by  Crossref logo
  • Molecular identification of sparganum of Spirometra mansoni isolated from the abdominal cavity of a domestic cat in Vietnam
    Yen Thi Hoang NGUYEN, Lan Anh Thi NGUYEN, Hieu VAN DONG, Hieu Duc DUONG, Ayako YOSHIDA
    Journal of Veterinary Medical Science.2024; 86(1): 96.     CrossRef
  • Spirometra species from Asia: Genetic diversity and taxonomic challenges
    Hiroshi Yamasaki, Oranuch Sanpool, Rutchanee Rodpai, Lakkhana Sadaow, Porntip Laummaunwai, Mesa Un, Tongjit Thanchomnang, Sakhone Laymanivong, Win Pa Pa Aung, Pewpan M. Intapan, Wanchai Maleewong
    Parasitology International.2021; 80: 102181.     CrossRef
  • Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh
    Tilak Chandra Nath, Keeseon S. Eom, Seongjun Choe, Shahadat Hm, Saiful Islam, Barakaeli Abdieli Ndosi, Yeseul Kang, Mohammed Mebarek Bia, Sunmin Kim, Chatanun Eamudomkarn, Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee
    Pathogens.2021; 10(2): 250.     CrossRef
  • Mitochondrial Genome of Spirometra theileri Compared with Other Spirometra Species
    Barakaeli Abdieli Ndosi, Hansol Park, Dongmin Lee, Seongjun Choe, Yeseul Kang, Tilak Chandra Nath, Mohammed Mebarek Bia, Chatanun Eamudomkarn, Hyeong-Kyu Jeon, Keeseon S. Eom
    The Korean Journal of Parasitology.2021; 59(2): 139.     CrossRef
  • Low prevalence of spargana infection in farmed frogs in the Yangtze River Delta of China
    Xiaoli Zhang, Rongsheng Mi, Yehua Zhang, Shijie Zhang, Tao Sun, Haiyan Jia, Yan Huang, Haiyan Gong, Xiangan Han, Zhaoguo Chen
    Infection, Genetics and Evolution.2020; 85: 104466.     CrossRef
  • 7,294 View
  • 138 Download
  • 5 Web of Science
  • Crossref
Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata
Li Dong, Xiaoling Ma, Mengfei Wang, Dan Zhu, Yuebiao Feng, Yi Zhang, Jingwen Wang
Korean J Parasitol 2018;56(5):515-519.
Published online October 31, 2018
DOI: https://doi.org/10.3347/kjp.2018.56.5.515
Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.

Citations

Citations to this article as recorded by  Crossref logo
  • The mitogenome of Triatoma brasiliensis brasiliensis (Hemiptera: Reduviidae), the main Chagas disease vector in the semi-arid region of northeastern Brazil
    Carlos E. Almeida, Lifeng Du, Jingwen Wang, Dayane Pires-Silva, Elaine Folly-Ramos, Myrian Harry, Cleber Galvão
    Parasites & Vectors.2025;[Epub]     CrossRef
  • Accidental importation of the vector of Chagas disease, Triatoma rubrofasciata (De Geer, 1773) (Hemiptera, Reduviidae, Triatominae), in Europe
    Francisco Collantes, Juan Francisco Campos-Serrano, Ignacio Ruiz-Arrondo
    Journal of Vector Ecology.2023;[Epub]     CrossRef
  • Variation in the Mitochondrial Genome of the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae)
    Cintia Judith Fernández, Beatriz Alicia García
    Neotropical Entomology.2022; 51(3): 483.     CrossRef
  • The Complete Nucleotide Sequence and Gene Organization of the Mitochondrial Genome of Triatoma boliviana (Hemiptera, Reduviidae, Triatominae) and Phylogenetic Comparisons
    Sebastián Pita, Pablo Mora, Mirko Rojas-Cortez, Teresa Palomeque, Pedro Lorite, Francisco Panzera
    Arthropoda.2022; 1(1): 3.     CrossRef
  • Modelling the climatic suitability of Chagas disease vectors on a global scale
    Fanny E Eberhard, Sarah Cunze, Judith Kochmann, Sven Klimpel
    eLife.2020;[Epub]     CrossRef
  • Phylogeny of the North-Central American clade of blood-sucking reduviid bugs of the tribe Triatomini (Hemiptera: Triatominae) based on the mitochondrial genome
    Magali Aguilera-Uribe, Rubi Nelsi Meza-Lázaro, Troy J. Kieran, Carlos N. Ibarra-Cerdeña, Alejandro Zaldívar-Riverón
    Infection, Genetics and Evolution.2020; 84: 104373.     CrossRef
  • Mitochondrial genomes of three kissing bugs (Reduviidae: Triatominae) and their phylogenetic implications
    Yisheng Zhao, Manjie Jiang, Yunfei Wu, Fan Song, Wanzhi Cai, Hu Li
    International Journal of Biological Macromolecules.2019; 134: 36.     CrossRef
  • Mitogenome analysis of Indian isolate of Rhipicephalus microplus clade A sensu ( ): A first report from Maritime South-East Asia
    Arun Kumar De, Ramachandran Muthiyan, Perumal Ponraj, K. Muniswamy, Jai Sunder, A. Kundu, D. Karunakaran, Zachariah George, M.S. Kundu, S.K. Zamir Ahmed, Dhruba Malakar, D. Bhattacharya
    Mitochondrion.2019; 49: 135.     CrossRef
  • Biological attributes of the kissing bug Triatoma rubrofasciata from Vietnam
    Ho Viet Hieu, Le Thanh Do, Sebastián Pita, Hoang Ha, Pham Thi Khoa, Pham Anh Tuan, Ta Phuong Mai, Ngo Giang Lien, Francisco Panzera
    Parasites & Vectors.2019;[Epub]     CrossRef
  • 8,624 View
  • 110 Download
  • 9 Web of Science
  • Crossref
Complete Mitochondrial Genome of a Tongue Worm Armillifer agkistrodontis
Jian Li, Fu-Nan He, Hong-Xiang Zheng, Rui-Xiang Zhang, Yi-Jing Ren, Wei Hu
Korean J Parasitol 2016;54(6):813-817.
Published online December 31, 2016
DOI: https://doi.org/10.3347/kjp.2016.54.6.813
Armillifer agkistrodontis (Ichthyostraca: Pantastomida) is a parasitic pathogen, only reported in China, which can cause a zoonotic disease, pentastomiasis. A complete mitochondrial (mt) genome was 16,521 bp comprising 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and 1 non-coding region (NCR). A phylogenetic tree drawn with the concatenated amino acid sequences of the 6 conserved PCGs (atp6, cox1-3, and nad2) showed that A. agkistrodontis and Armillifer armillatus constituted a clade Pentastomida which was a sister group of the Branchiura. The complete mt genome sequence of A. agkistrodontis provides important genetic markers for both phylogenetic and epidemiological studies of pentastomids.

Citations

Citations to this article as recorded by  Crossref logo
  • New information on adults pentastomids (Crustacea: Pentastomida) found in ophidians from Argentina: Insights from 28S rDNA and COI mtDNA
    Martin Miguel Montes, Exequiel Oscar Furlan, Jorge Adrian Barneche, Clara Vercellini, Tomas Acuña Gonzalez, Marina Ibañez Shimabukuro, Vanesa Arzamendia
    Systematic Parasitology.2025;[Epub]     CrossRef
  • First complete mitochondrial genome of Armillifer moniliformis (Pentastomida: Porocephalida) isolated from a human case in Northern Thailand: comparative and phylogenetic analyses
    Thanapat Pataradool, Padet Siriyasatien, Woraporn Sukhumavasi, Saruda Tiwananthagorn, Chusana Suankratay, Kanok Preativatanyou
    Parasitology Research.2025;[Epub]     CrossRef
  • Linguatula serrata in an imported dog in Germany: Single-case or emerging disease?
    Maxi Berberich, Thomas Grochow, Nadine Roßner, Ronald Schmäschke, Zaida Rentería-Solís
    Veterinary Parasitology: Regional Studies and Reports.2022; 30: 100717.     CrossRef
  • The complete mitochondrial genome of the pentastomid Linguatula arctica (Pentastomida) from reindeer (Rangifer tarandus) in Northern Norway
    José Horacio Grau, Jason A. Dunlop, Martin Meixner, Dennis Tappe, Bjørn Gjerde
    Mitochondrial DNA Part B.2020; 5(3): 3438.     CrossRef
  • Detection of a Larva of Armillifer armillatus in a Potto (Perodicticus potto) from the Republic of the Congo
    Thomas Lemarcis, Cédric Benjamin Chesnais, Sébastien David Serge Pion, Michel Boussinesq, Sabrina Locatelli
    Journal of Parasitology.2020;[Epub]     CrossRef
  • The complete mitochondrial genome of Linguatula serrata (tongue worm) isolated from a dog and phylogenetic analysis
    Tanian Naude, Sameer Pant, Mousa Tavassoli, Subir Sarker, Seyed Ali Ghorashi
    Mitochondrial DNA Part B.2018; 3(1): 357.     CrossRef
  • The complete mitochondrial genome of the pentastomid Armillifer grandis (Pentastomida) from the Democratic Republic of Congo
    José Horacio Grau, Jason A. Dunlop, Martin Meixner, Dennis Tappe
    Mitochondrial DNA Part B.2017; 2(1): 287.     CrossRef
  • Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships
    Gonzalo Giribet, Gregory D. Edgecombe
    Integrative and Comparative Biology.2017; 57(3): 455.     CrossRef
  • 9,933 View
  • 131 Download
  • 9 Web of Science
  • Crossref
Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger
Kangxin Li, Fang Yang, A. Y. Abdullahi, Meiran Song, Xianli Shi, Minwei Wang, Yeqi Fu, Weida Pan, Fang Shan, Wu Chen, Guoqing Li
Korean J Parasitol 2016;54(6):803-807.
Published online December 31, 2016
DOI: https://doi.org/10.3347/kjp.2016.54.6.803
Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina. This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

Citations

Citations to this article as recorded by  Crossref logo
  • Hymenolepis nana antigens alleviate ulcerative colitis by promoting intestinal stem cell proliferation and differentiation via AhR/IL-22 signaling pathway
    Xuanyin Cui, Yi Cheng, Hongyan Wang, Xiaomao Li, Jinfu Li, Ke Zhang, Rong Mou, Fernando Lopes
    PLOS Neglected Tropical Diseases.2024; 18(12): e0012714.     CrossRef
  • The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus)
    Qi Zhao, Asmaa M.I. Abuzeid, Long He, Tingting Zhuang, Xiu Li, Jumei Liu, Shilan Zhu, Xiaoyu Chen, Guoqing Li
    Parasitology International.2021; 85: 102434.     CrossRef
  • Ascarid infection in wild Amur tigers (Panthera tigris altaica) in China
    Zhi-wei Peng, Yao Ning, Dan Liu, Ying Sun, Li-xin Wang, Qi-an Zhai, Zhi-jun Hou, Hong-liang Chai, Guang-shun Jiang
    BMC Veterinary Research.2020;[Epub]     CrossRef
  • Molecular characterization of ascaridoid parasites from captive wild carnivores in China using ribosomal and mitochondrial sequences
    Yue Xie, Yingxin Li, Xiaobin Gu, Yunjian Liu, Xuan Zhou, Lu Wang, Ran He, Xuerong Peng, Guangyou Yang
    Parasites & Vectors.2020;[Epub]     CrossRef
  • Wildlife forensics: A boon for species identification and conservation implications
    Sushanto Gouda, Rout George Kerry, Angshuman Das, Netrapal Singh Chauhan
    Forensic Science International.2020; 317: 110530.     CrossRef
  • Comparative analysis of mitochondrial DNA datasets indicates that Toxascaris leonina represents a species complex
    Yuan-Chun Jin, Xiang-Yong Li, Jin-Hui Liu, Xing-Quan Zhu, Guo-Hua Liu
    Parasites & Vectors.2019;[Epub]     CrossRef
  • 9,088 View
  • 131 Download
  • 7 Web of Science
  • Crossref
Complete Mitochondrial Genome of Anoplocephala magna Solidifying the Species
Aijiang Guo
Korean J Parasitol 2016;54(3):369-373.
Published online June 30, 2016
DOI: https://doi.org/10.3347/kjp.2016.54.3.369
The 2 species of the genus Anoplocephala (Anoplocephalidae), A. perfoliata and A. magna, are among the most important equine cestode parasites. However, there is little information about their differences at the molecular level. The present study revealed that the mitochondrial (mt) genome of A. magna was 13,759 bp in size and 700 bp shorter than that of A. perfoliata. The 2 species includes 2 rRNA, 22 tRNA, and 12 protein-coding genes each. The size of each of the 36 genes was the same as that of A. perfoliata, except for cox1, rrnL, trnC, trnS2(UCN), trnG, trnH, trnQ, and trnP. In the full mitochondrial genome, the sequence similarity was 87.1%. The divergence in the nucleotide and amino acid sequences of individual protein-coding genes ranged from 11.1% to 16% and 6.8% to 16.4%, respectively. The 2 noncoding regions of the mt genome of A. magna were 199 bp and 271 bp in length, while the equivalent regions in A. perfoliata were 875 bp and 276 bp, respectively. The results of this study support the proposal that A. magna and A. perfoliata are separate species, consistent with previous morphological analyses.

Citations

Citations to this article as recorded by  Crossref logo
  • Characterization of the Complete Mitochondrial Genome of Ostertagia trifurcata of Small Ruminants and its Phylogenetic Associations for the Trichostrongyloidea Superfamily
    Awais Ali Ahmad, Xin Yang, Ting Zhang, Chunqun Wang, Caixian Zhou, Xingrun Yan, Mubashar Hassan, Muhammad Ikram, Min Hu
    Genes.2019; 10(2): 107.     CrossRef
  • Morphological and genetic characterizations of Avitellina tapeworms from domestic ruminants in Senegal: An evidence of specificity among sheep and cattle host
    Mallé Ndom, Gora Diop, Tetsuya Yanagida, Yann Quilichini, Alioune Dieye, Bernard Marchand, Minoru Nakao, Akira Ito, Tidiane B.A. Cheikh
    Veterinary Parasitology: Regional Studies and Reports.2019; 18: 100337.     CrossRef
  • Moniezia benedeni and Moniezia expansa are distinct cestode species based on complete mitochondrial genomes
    Aijiang Guo
    Acta Tropica.2017; 166: 287.     CrossRef
  • The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes
    Aijiang Guo
    Parasites & Vectors.2016;[Epub]     CrossRef
  • Characterization of the complete mitochondrial genome of the cloacal tapeworm Cloacotaenia megalops (Cestoda: Hymenolepididae)
    Aijiang Guo
    Parasites & Vectors.2016;[Epub]     CrossRef
  • 8,641 View
  • 94 Download
  • 6 Web of Science
  • Crossref

Original Article

Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)
Keeseon S. Eom, Hansol Park, Dongmin Lee, Seongjun Choe, Kyu-Heon Kim, Hyeong-Kyu Jeon
Korean J Parasitol 2015;53(4):455-463.
Published online August 25, 2015
DOI: https://doi.org/10.3347/kjp.2015.53.4.455
The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei.

Citations

Citations to this article as recorded by  Crossref logo
  • Description of Spirometra asiana sp. nov. (Cestoda: Diphyllobothriidae) found in wild boars and hound dogs in Japan
    Hiroshi Yamasaki, Hiromu Sugiyama, Yasuyuki Morishima, Hirotaka Kobayashi
    Parasitology International.2024; 98: 102798.     CrossRef
  • Molecular Characterization of Spirometra erinaceieuropaei from Jungle Cat (Felis chaus) in North of Iran
    Mahboobeh Salimi, Meysam Sharifdini, Eshrat Beigom Kia
    Acta Parasitologica.2024; 69(1): 574.     CrossRef
  • Molecular identification of sparganum of Spirometra mansoni isolated from the abdominal cavity of a domestic cat in Vietnam
    Yen Thi Hoang NGUYEN, Lan Anh Thi NGUYEN, Hieu VAN DONG, Hieu Duc DUONG, Ayako YOSHIDA
    Journal of Veterinary Medical Science.2024; 86(1): 96.     CrossRef
  • Molecular Characterization and Phylogenetic Analysis of Spirometra Tapeworms from Snakes in Hunan Province
    Shu-Yu Chen, Teng-Fang Gong, Jun-Lin He, Fen Li, Wen-Chao Li, Li-Xing Xie, Xin-Rui Xie, Yi-Song Liu, Ying-Fang Zhou, Wei Liu
    Veterinary Sciences.2022; 9(2): 62.     CrossRef
  • Morphological Characteristics and Molecular Phylogenetic Evidence Support the Existence of a New Spirometra Species, Spirometra Asiana, (Cestoda: Diphyllobothriidae) in the Wild Boar
    Hiroshi Yamasaki, Hiromu Sugiyama, Yasuyuki Morishima
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Spirometra species from Asia: Genetic diversity and taxonomic challenges
    Hiroshi Yamasaki, Oranuch Sanpool, Rutchanee Rodpai, Lakkhana Sadaow, Porntip Laummaunwai, Mesa Un, Tongjit Thanchomnang, Sakhone Laymanivong, Win Pa Pa Aung, Pewpan M. Intapan, Wanchai Maleewong
    Parasitology International.2021; 80: 102181.     CrossRef
  • Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh
    Tilak Chandra Nath, Keeseon S. Eom, Seongjun Choe, Shahadat Hm, Saiful Islam, Barakaeli Abdieli Ndosi, Yeseul Kang, Mohammed Mebarek Bia, Sunmin Kim, Chatanun Eamudomkarn, Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee
    Pathogens.2021; 10(2): 250.     CrossRef
  • First Clinical Cases of Spirometrosis in Two Cats in Korea
    Joohyung Kim, Younsung Ock, Kihwan Yang, Seongjun Choe, Kyung-Mee Park, Wan-Kyu Lee, Kyung-Chul Choi, Soochong Kim, Dongmi Kwak, Seung-Hun Lee
    The Korean Journal of Parasitology.2021; 59(2): 153.     CrossRef
  • Mitochondrial Genome of Spirometra theileri Compared with Other Spirometra Species
    Barakaeli Abdieli Ndosi, Hansol Park, Dongmin Lee, Seongjun Choe, Yeseul Kang, Tilak Chandra Nath, Mohammed Mebarek Bia, Chatanun Eamudomkarn, Hyeong-Kyu Jeon, Keeseon S. Eom
    The Korean Journal of Parasitology.2021; 59(2): 139.     CrossRef
  • Evolutionary transitions in broad tapeworms (Cestoda: Diphyllobothriidea) revealed by mitogenome and nuclear ribosomal operon phylogenetics
    Natalia Fraija-Fernández, Andrea Waeschenbach, Andrew G. Briscoe, Suzanne Hocking, Roman Kuchta, Tommi Nyman, D. Timothy J. Littlewood
    Molecular Phylogenetics and Evolution.2021; 163: 107262.     CrossRef
  • Comparative Characterization of Mitogenomes From Five Orders of Cestodes (Eucestoda: Tapeworms)
    Bruna Trevisan, Denis Jacob Machado, Daniel J. G. Lahr, Fernando P. L. Marques
    Frontiers in Genetics.2021;[Epub]     CrossRef
  • Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens
    Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee, Seongjun Choe, Yeseul Kang, Mohammed Mebarek Bia, Sang-Hwa Lee, Keeseon S. Eom
    The Korean Journal of Parasitology.2019; 57(1): 55.     CrossRef
  • Development of EST-derived microsatellite markers to investigate the population structure of sparganum — the causative agent of zoonotic sparganosis
    Xi Zhang, Xiu Hong, Jiang Yang Duan, Lu Lu Han, Zi Yang Hong, Peng Jiang, Zhong Quan Wang, Jing Cui
    Parasitology.2019; 146(07): 947.     CrossRef
  • Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: Recent progress and future challenges
    Tomáš Scholz, Roman Kuchta, Jan Brabec
    International Journal for Parasitology: Parasites and Wildlife.2019; 9: 359.     CrossRef
  • Mitochondrial DNA Sequence Variability of Spirometra Species in Asian Countries
    Hyeong-Kyu Jeon, Keeseon S. Eom
    The Korean Journal of Parasitology.2019; 57(5): 481.     CrossRef
  • Spirometra decipiens (Cestoda: Diphyllobothriidae) Collected in A Heavily Infected Stray Cat from the Republic of Korea
    Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee, Seongjun Choe, Keeseon S. Eom
    The Korean Journal of Parasitology.2018; 56(1): 87.     CrossRef
  • Differential Diagnosis of Human Sparganosis Using Multiplex PCR
    Hyeong-Kyu Jeon, Kyu-Heon Kim, Woon-Mok Sohn, Keeseon S. Eom
    The Korean Journal of Parasitology.2018; 56(3): 295.     CrossRef
  • Establishment of the complete life cycle of Spirometra (Cestoda: Diphyllobothriidae) in the laboratory using a newly isolated triploid clone
    Tetsuya Okino, Hiroshi Ushirogawa, Kumiko Matoba, Shin-ichiro Nishimatsu, Mineki Saito
    Parasitology International.2017; 66(2): 116.     CrossRef
  • Using the small subunit of nuclear ribosomal DNA to reveal the phylogenetic position of the plerocercoid larvae of Spirometra tapeworms
    Xi Zhang, Jiang Yang Duan, Zhong Quan Wang, Peng Jiang, Ruo Dan Liu, Jing Cui
    Experimental Parasitology.2017; 175: 1.     CrossRef
  • Characterization of the complete mitochondrial genome of Khawia sinensis belongs among platyhelminths, cestodes
    Yan Feng, Han-Li Feng, Yi-Hui Fang, Ying-Bing Su
    Experimental Parasitology.2017; 177: 35.     CrossRef
  • Comparative mitochondrial genomics among Spirometra (Cestoda: Diphyllobothriidae) and the molecular phylogeny of related tapeworms
    Xi Zhang, Jiang Yang Duan, Ya Li Shi, Peng Jiang, De Jun Zeng, Zhong Quan Wang, Jing Cui
    Molecular Phylogenetics and Evolution.2017; 117: 75.     CrossRef
  • Complete sequence and characterization of the mitochondrial genome of Diphyllobothrium stemmacephalum , the type species of genus Diphyllobothrium (Cestoda: Diphyllobothriidae), using next generation sequencing
    Hiroshi Yamasaki, Shinji Izumiyama, Tomoyoshi Nozaki
    Parasitology International.2017; 66(5): 573.     CrossRef
  • Genetic Identification of Spirometra decipiens Plerocercoids in Terrestrial Snakes from Korea and China
    Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee, Seongjun Choe, Kyu-Heon Kim, Woon- Mok Sohn, Keeseon S. Eom
    The Korean Journal of Parasitology.2016; 54(2): 181.     CrossRef
  • Molecular Detection of Spirometra decipiens in the United States
    Hyeong-Kyu Jeon, Hansol Park, Dongmin Lee, Seongjun Choe, Woon-Mok Sohn, Keeseon S. Eom
    The Korean Journal of Parasitology.2016; 54(4): 503.     CrossRef
  • Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing
    Tongjit Thanchomnang, Chairat Tantrawatpan, Pewpan M. Intapan, Oranuch Sanpool, Viraphong Lulitanond, Somjintana Tourtip, Hiroshi Yamasaki, Wanchai Maleewong
    Scientific Reports.2016;[Epub]     CrossRef
  • 12,039 View
  • 151 Download
  • 26 Web of Science
  • Crossref

Brief Communication

Whole Mitochondrial Genome Sequence of an Indian Plasmodium falciparum Field Isolate
Suchi Tyagi, Veena Pande, Aparup Das
Korean J Parasitol 2014;52(1):99-103.
Published online February 19, 2014
DOI: https://doi.org/10.3347/kjp.2014.52.1.99

Mitochondrial genome sequence of malaria parasites has served as a potential marker for inferring evolutionary history of the Plasmodium genus. In Plasmodium falciparum, the mitochondrial genome sequences from around the globe have provided important evolutionary understanding, but no Indian sequence has yet been utilized. We have sequenced the whole mitochondrial genome of a single P. falciparum field isolate from India using novel primers and compared with the 3D7 reference sequence and 1 previously reported Indian sequence. While the 2 Indian sequences were highly divergent from each other, the presently sequenced isolate was highly similar to the reference 3D7 strain.

Citations

Citations to this article as recorded by  Crossref logo
  • Preventing malaria by administering a monoclonal antibody
    PRAGYAN ACHARYA
    The National Medical Journal of India.2025; 37: 259.     CrossRef
  • Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina.
    Ronie Haro, Nikita Walunjkar, Soham Jorapur, Claudio H. Slamovits
    Protist.2024; 175(6): 126071.     CrossRef
  • Striking Diversity of Mitochondria-Specific Translation Processes across Eukaryotes
    Florent Waltz, Philippe Giegé
    Trends in Biochemical Sciences.2020; 45(2): 149.     CrossRef
  • Mitochondrial Inheritance in Phytopathogenic Fungi—Everything Is Known, or Is It?
    Hector Mendoza, Michael H. Perlin, Jan Schirawski
    International Journal of Molecular Sciences.2020; 21(11): 3883.     CrossRef
  • Mitochondrial population genomic analyses reveal population structure and demography of Indian Plasmodium falciparum
    Suchi Tyagi, Aparup Das
    Mitochondrion.2015; 24: 9.     CrossRef
  • New insights into the evolutionary history of Plasmodium falciparum from mitochondrial genome sequence analyses of Indian isolates
    Suchi Tyagi, Veena Pande, Aparup Das
    Molecular Ecology.2014; 23(12): 2975.     CrossRef
  • Mitochondrial genome sequence diversity of Indian Plasmodium falciparum isolates
    Suchi Tyagi, Veena Pande, Aparup Das
    Memórias do Instituto Oswaldo Cruz.2014; 109(4): 494.     CrossRef
  • 12,940 View
  • 112 Download
  • 8 Web of Science
  • Crossref

Original Article

Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes
Dongmin Lee, Seongjun Choe, Hansol Park, Hyeong-Kyu Jeon, Jong-Yil Chai, Woon-Mok Sohn, Tai-Soon Yong, Duk-Young Min, Han-Jong Rim, Keeseon S. Eom
Korean J Parasitol 2013;51(6):719-726.
Published online December 31, 2013
DOI: https://doi.org/10.3347/kjp.2013.51.6.719

Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.

Citations

Citations to this article as recorded by  Crossref logo
  • The complete mitochondrial genome of Aspidogaster ijimai (Platyhelminthes: Trematoda: Aspidogastrea): gene content and phylogenetic inference
    D. A. Solodovnik, D. M. Atopkin, A. A. Semenchenko, M. Urabe, S. G. Sokolov
    Invertebrate Zoology.2025; 22(3): 411.     CrossRef
  • Trematode species diversity in the faucet snail, Bithynia tentaculata at the western edge of its native distribution, in Ireland
    A. Faltýnková, K. O’Dwyer, C. Pantoja, D. Jouet, K. Skírnisson, O. Kudlai
    Journal of Helminthology.2024;[Epub]     CrossRef
  • Black spot diseases in seven commercial fish species from the English Channel and the North Sea: infestation levels, identification and population genetics of Cryptocotyle spp.
    Maureen Duflot, Pierre Cresson, Maéva Julien, Léa Chartier, Odile Bourgau, Marialetizia Palomba, Simonetta Mattiucci, Graziella Midelet, Mélanie Gay
    Parasite.2023; 30: 28.     CrossRef
  • A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences
    D. M. Atopkin, A. A. Semenchenko, D. A. Solodovnik, Y. I. Ivashko
    Journal of Helminthology.2023;[Epub]     CrossRef
  • Mitophylogenomics of the zoonotic fluke Echinostoma malayanum confirms it as a member of the genus Artyfechinostomum Lane, 1915 and illustrates the complexity of Echinostomatidae systematics
    Linh Thi Khanh Pham, Weerachai Saijuntha, Scott P. Lawton, Thanh Hoa Le
    Parasitology Research.2022; 121(3): 899.     CrossRef
  • Characterization of complete mitochondrial genome and ribosomal operon forCarassotrema koreanumPark, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data
    Y.I. Ivashko, A.A. Semenchenko, D.A. Solodovnik, D.M. Atopkin
    Journal of Helminthology.2022;[Epub]     CrossRef
  • Characterization of the complete mitochondrial genomes of Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae): Comparison with the members of the superfamily Paramphistomoidea and phylogenetic implication
    Qi An, Yang-Yuan Qiu, Yan Lou, Yan Jiang, Hong-Yu Qiu, Zhong-Huai Zhang, Ben Li, Ai-Hui Zhang, Wei Wei, Ying-Yu Chen, Jun-Feng Gao, Chun-Ren Wang
    International Journal for Parasitology: Parasites and Wildlife.2022; 19: 9.     CrossRef
  • The complete mitogenome of the Asian lung fluke Paragonimus skrjabini miyazakii and its implications for the family Paragonimidae (Trematoda: Platyhelminthes)
    Thanh Hoa Le, Khue Thi Nguyen, Linh Thi Khanh Pham, Huong Thi Thanh Doan, Takeshi Agatsuma, David Blair
    Parasitology.2022; 149(13): 1709.     CrossRef
  • Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism
    Natalia Zajac, Stefan Zoller, Katri Seppälä, David Moi, Christophe Dessimoz, Jukka Jokela, Hanna Hartikainen, Natasha Glover, Dennis Lavrov
    Genome Biology and Evolution.2021;[Epub]     CrossRef
  • First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971
    Dmitry M. Atopkin, Alexander A. Semenchenko, Daria A. Solodovnik, Yana I. Ivashko, Kirill A. Vinnikov
    Parasitology Research.2021; 120(6): 2037.     CrossRef
  • Morphological and molecular identification of Cryptocotyle lingua metacercariae isolated from Atlantic cod (Gadus morhua) from Danish seas and whiting (Merlangius merlangus) from the English Channel
    Maureen Duflot, Mélanie Gay, Graziella Midelet, Per Walter Kania, Kurt Buchmann
    Parasitology Research.2021; 120(10): 3417.     CrossRef
  • Discovery of Carcinogenic Liver Fluke Metacercariae in Second Intermediate Hosts and Surveillance on Fish-Borne Trematode Metacercariae Infections in Mekong Region of Myanmar
    Ei Ei Phyo Myint, Amornpun Sereemaspun, Joacim Rocklöv, Choosak Nithikathkul
    International Journal of Environmental Research and Public Health.2020; 17(11): 4108.     CrossRef
  • Characterization of the mitochondrial genome sequences of the liver fluke Amphimerus sp. (Trematoda: Opisthorchiidae) from Ecuador and phylogenetic implications
    Jun Ma, Jun-Jun He, Cheng-Yan Zhou, Miao-Miao Sun, William Cevallos, Hiromu Sugiyama, Xing-Quan Zhu, Manuel Calvopiña
    Acta Tropica.2019; 195: 90.     CrossRef
  • The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes
    Thanh Hoa Le, Khue Thi Nguyen, Nga Thi Bich Nguyen, Huong Thi Thanh Doan, Takeshi Agatsuma, David Blair
    PeerJ.2019; 7: e7031.     CrossRef
  • The Complete Mitochondrial Genome of the Caecal Fluke of Poultry, Postharmostomum commutatum, as the First Representative from the Superfamily Brachylaimoidea
    Yi-Tian Fu, Yuan-Chun Jin, Guo-Hua Liu
    Frontiers in Genetics.2019;[Epub]     CrossRef
  • The complete mitochondrial genome of Orthocoelium streptocoelium (Digenea: Paramphistomidae) for comparison with other digeneans
    Y.Y. Zhao, X. Yang, H.M. Chen, L.X. Wang, H.L. Feng, P.F. Zhao, L. Tan, W.Q. Lei, Y. Ao, M. Hu, R. Fang
    Journal of Helminthology.2017; 91(2): 255.     CrossRef
  • Molecular characterization and confocal laser scanning microscopic study of Pygidiopsis macrostomum (Trematoda: Heterophyidae) parasites of guppies Poecilia vivipara
    J N Borges, V S Costa, C Mantovani, E Barros, E G N Santos, C L Mafra, C P Santos
    Journal of Fish Diseases.2017; 40(2): 191.     CrossRef
  • Molecular characterization of the unique Mesostephanus appendiculatus (Trematoda: Cyathocotylidae) by small ribosomal RNA from Egypt
    Nasr M. El-Bahy, Eman K. Bazh, Shimaa S. Sorour, Nagwa M. Elhawary
    Parasitology Research.2017; 116(4): 1129.     CrossRef
  • Fishborne zoonotic heterophyid infections: An update
    Jong-Yil Chai, Bong-Kwang Jung
    Food and Waterborne Parasitology.2017; 8-9: 33.     CrossRef
  • Updated molecular phylogenetic data for Opisthorchis spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam
    Thanh Thi Ha Dao, Thanh Thi Giang Nguyen, Sarah Gabriël, Khanh Linh Bui, Pierre Dorny, Thanh Hoa Le
    Parasites & Vectors.2017;[Epub]     CrossRef
  • Mitochondrial genome of Ogmocotyle sikae and implications for phylogenetic studies of the Notocotylidae trematodes
    Jun Ma, Jun-Jun He, Guo-Hua Liu, David Blair, Li-Zhi Liu, Yi Liu, Xing-Quan Zhu
    Infection, Genetics and Evolution.2016; 37: 208.     CrossRef
  • The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): Comparison with other closely related species and phylogenetic implications
    Lu Na, Jun-Feng Gao, Guo-Hua Liu, Xue Fu, Xin Su, Dong-Mei Yue, Yuan Gao, Yan Zhang, Chun-Ren Wang
    Infection, Genetics and Evolution.2016; 39: 45.     CrossRef
  • Epidemiological and molecular data on heterophyid trematode metacercariae found in the muscle of grey mullets (Osteichthyes: Mugilidae) from Sardinia (western Mediterranean Sea)
    Simonetta Masala, Maria Cristina Piras, Daria Sanna, Jong-Yil Chai, Bong-Kwang Jung, Woon-Mok Sohn, Giovanni Garippa, Paolo Merella
    Parasitology Research.2016; 115(9): 3409.     CrossRef
  • Complete mitochondrial genome analysis of Clinostomum complanatum and its comparison with selected digeneans
    Lu Chen, Yan Feng, Hong-Mei Chen, Li-Xia Wang, Han-Li Feng, Xin Yang, Mudassar-Niaz Mughal, Rui Fang
    Parasitology Research.2016; 115(8): 3249.     CrossRef
  • Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)
    Ze-Xuan Liu, Yan Zhang, Yu-Ting Liu, Qiao-Cheng Chang, Xin Su, Xue Fu, Dong-Mei Yue, Yuan Gao, Chun-Ren Wang
    The Korean Journal of Parasitology.2016; 54(2): 173.     CrossRef
  • Characterization of the complete mitochondrial genome sequence of Homalogaster paloniae (Gastrodiscidae, Trematoda) and comparative analyses with selected digeneans
    Xin Yang, Lixia Wang, Hanli Feng, Mingwei Qi, Zongze Zhang, Chong Gao, Chunqun Wang, Min Hu, Rui Fang, Chengye Li
    Parasitology Research.2016; 115(10): 3941.     CrossRef
  • A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes)
    Thanh Hoa Le, Nga Thi Bich Nguyen, Khue Thi Nguyen, Huong Thi Thanh Doan, Do Trung Dung, David Blair
    Infection, Genetics and Evolution.2016; 45: 369.     CrossRef
  • Mitochondrial and nuclear ribosomal DNA dataset supports that Paramphistomum leydeni (Trematoda: Digenea) is a distinct rumen fluke species
    Jun Ma, Jun-Jun He, Guo-Hua Liu, Dong-Hui Zhou, Jian-Zhi Liu, Yi Liu, Xing-Quan Zhu
    Parasites & Vectors.2015;[Epub]     CrossRef
  • Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome
    Xin Yang, Yunyang Zhao, Lixia Wang, Hanli Feng, Li Tan, Weiqiang Lei, Pengfei Zhao, Min Hu, Rui Fang
    Parasites & Vectors.2015;[Epub]     CrossRef
  • Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences
    Guo-Hua Liu, Hong-Bin Yan, Domenico Otranto, Xing-Ye Wang, Guang-Hui Zhao, Wan-Zhong Jia, Xing-Quan Zhu
    Molecular Phylogenetics and Evolution.2014; 79: 325.     CrossRef
  • 11,641 View
  • 100 Download
  • Crossref

Articles from Symposium on Asian Taenia (October 2011, Osong, Korea)

Molecular Approaches to Taenia asiatica
Hyeong-Kyu Jeon, Keeseon S. Eom
Korean J Parasitol 2013;51(1):1-8.
Published online February 18, 2013
DOI: https://doi.org/10.3347/kjp.2013.51.1.1

Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.

Citations

Citations to this article as recorded by  Crossref logo
  • Identification and functional characterization of the siRNA pathway in Taenia crassiceps by silencing Enolase A
    Julio Guerrero-Hernández, Raúl J. Bobes, Martín García-Varela, Alejandro Castellanos-Gonzalez, Juan P. Laclette
    Acta Tropica.2022; 225: 106197.     CrossRef
  • Taenia saginata Infection Misdiagnosed as Acute Cholecystitis in a Tibetan Patient, in China
    Xiu-Min Han, Xue-Yong Zhang, Ying-Na Jian, Qing-Shan Tian
    The Korean Journal of Parasitology.2021; 59(3): 311.     CrossRef
  • Current status of Opisthorchis viverrini, minute intestinal fluke and Taenia spp. infections among inhabitants in the Kenethao district of northern Lao PDR
    Phasouk Senephansiri, Thaksaporn Thongseesuksai, Phaviny Sithay, Sakhone Laymanivong, Thidarut Boonmar, Porntip Laummaunwai
    Transactions of The Royal Society of Tropical Medicine and Hygiene.2020; 114(5): 397.     CrossRef
  • Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development
    Hanif Ullah, Abdul Qadeer, Muhammad Rashid, Muhammad Imran Rashid, Guofeng Cheng
    Parasitology.2020; 147(4): 383.     CrossRef
  • Mitochondrial Genome Sequences of <i>Spirometra erinaceieuropaei</i> and <i>S. decipiens</i> (Cestoidea: Diphyllobothriidae)
    Keeseon S. Eom, Hansol Park, Dongmin Lee, Seongjun Choe, Kyu-Heon Kim, Hyeong-Kyu Jeon
    The Korean Journal of Parasitology.2015; 53(4): 455.     CrossRef
  • Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances
    Philip A. Collender, Amy E. Kirby, David G. Addiss, Matthew C. Freeman, Justin V. Remais
    Trends in Parasitology.2015; 31(12): 625.     CrossRef
  • Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach
    Tongjit Thanchomnang, Chairat Tantrawatpan, Pewpan M. Intapan, Oranuch Sanpool, Penchom Janwan, Viraphong Lulitanond, Somjintana Tourtip, Hiroshi Yamasaki, Wanchai Maleewong, Emmanuel Dias-Neto
    PLoS ONE.2014; 9(6): e100611.     CrossRef
  • Control of cysticercosis in Madagascar: beware of the pitfalls
    Harentsoaniaina Rasamoelina-Andriamanivo, Vincent Porphyre, Ronan Jambou
    Trends in Parasitology.2013; 29(11): 538.     CrossRef
  • 11,933 View
  • 119 Download
  • Crossref
Original Article
Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes
Thanh Hoa Le, Donald Peter McManus, David Blair
Korean J Parasitol 2004;42(4):159-167.
Published online December 20, 2004
DOI: https://doi.org/10.3347/kjp.2004.42.4.159

Sequences of the complete protein-coding portions of the mitochondrial (mt) genome were analysed for 6 species of cestodes (including hydatid tapeworms and the pork tapeworm) and 5 species of trematodes (blood flukes and liver- and lung-flukes). A near-complete sequence was also available for an additional trematode (the blood flukeSchistosoma malayensis). All of these parasites belong to a large flatworm taxon named the Neodermata. Considerable variation was found in the base composition of the protein-coding genes among these neodermatans. This variation was reflected in statistically-significant differences in numbers of each inferred amino acid between many pairs of species. Both convergence and divergence in nucleotide, and hence amino acid, composition was noted among groups within the Neodermata. Considerable variation in skew (unequal representation of complementary bases on the same strand) was found among the species studied. A pattern is thus emerging of diversity in the mt genome in neodermatans that may cast light on evolution of mt genomes generally.

Citations

Citations to this article as recorded by  Crossref logo
  • Signatures of Endosymbiosis in Mitochondrial Genomes of Rhabdocoel Flatworms
    M. Monnens, T. Artois, A. Briscoe, Y. L. Diez, K. P. P. Fraser, B. S. Leander, D. T. J. Littlewood, M. J. Santos, K. Smeets, N. W. L. Van Steenkiste, M. P. M. Vanhove
    Molecular Ecology.2025;[Epub]     CrossRef
  • Evolution of codon usage in Taenia saginata genomes and its impact on the host
    Siddiq Ur Rahman, Hassan Ur Rehman, Inayat Ur Rahman, Muazzam Ali Khan, Fazli Rahim, Hamid Ali, Dekun Chen, Wentao Ma
    Frontiers in Veterinary Science.2023;[Epub]     CrossRef
  • Characterization of the complete mitochondrial genome of the fluke of turdus, Plagiorchis elegans, and phylogenetic implications
    Rong Li, Hui-Mei Wang, Guo-Hua Liu, Ya Tu, Yuan-Ping Deng
    Experimental Parasitology.2022; 242: 108387.     CrossRef
  • Analysis of codon usage bias of lumpy skin disease virus causing livestock infection
    Siddiq Ur Rahman, Hassan Ur Rehman, Inayat Ur Rahman, Abdur Rauf, Abdulrahman Alshammari, Metab Alharbi, Noor ul Haq, Hafiz Ansar Rasul Suleria, Sayed Haidar Abbas Raza
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Understanding the codon usage patterns of mitochondrial CO genes among Amphibians
    Parvin A. Barbhuiya, Arif Uddin, Supriyo Chakraborty
    Gene.2021; 777: 145462.     CrossRef
  • Characterization of the complete mitochondrial genome of Diplostomum baeri
    Toby Landeryou, Stephen M. Kett, Anne Ropiquet, Dirk Wildeboer, Scott P. Lawton
    Parasitology International.2020; 79: 102166.     CrossRef
  • Probing recalcitrant problems in polyclad evolution and systematics with novel mitochondrial genome resources
    Nathan J. Kenny, Carolina Noreña, Cristina Damborenea, Cristina Grande
    Genomics.2019; 111(3): 343.     CrossRef
  • The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes
    Thanh Hoa Le, Khue Thi Nguyen, Nga Thi Bich Nguyen, Huong Thi Thanh Doan, Takeshi Agatsuma, David Blair
    PeerJ.2019; 7: e7031.     CrossRef
  • Compositional Analysis of Flatworm Genomes Shows Strong Codon Usage Biases Across All Classes
    Guillermo Lamolle, Santiago Fontenla, Gastón Rijo, Jose F. Tort, Pablo Smircich
    Frontiers in Genetics.2019;[Epub]     CrossRef
  • Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes
    Prosenjit Paul, Arup Kumar Malakar, Supriyo Chakraborty
    Food Science and Biotechnology.2018; 27(3): 725.     CrossRef
  • Phenotypic plasticity of six unusual cercariae in nassariid gastropods and their relationships to the Acanthocolpidae and Brachycladiidae (Digenea)
    Leonie J. Barnett, Terrence L. Miller
    Parasitology International.2018; 67(2): 225.     CrossRef
  • Characterization of the complete mitochondrial genomes from Polycladida (Platyhelminthes) using next-generation sequencing
    M. Teresa Aguado, Cristina Grande, Michael Gerth, Christoph Bleidorn, Carolina Noreña
    Gene.2016; 575(2): 199.     CrossRef
  • The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes
    Aijiang Guo
    Parasites & Vectors.2016;[Epub]     CrossRef
  • A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes)
    Thanh Hoa Le, Nga Thi Bich Nguyen, Khue Thi Nguyen, Huong Thi Thanh Doan, Do Trung Dung, David Blair
    Infection, Genetics and Evolution.2016; 45: 369.     CrossRef
  • Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms
    Eduard Solà, Marta Álvarez-Presas, Cristina Frías-López, D. Timothy J. Littlewood, Julio Rozas, Marta Riutort, Hector Escriva
    PLOS ONE.2015; 10(3): e0120081.     CrossRef
  • An initial molecular signature of Indian isolates of Toxocara
    K JEEVA, N CHATTERJEE, A K BERA, S MAITI, HIRA RAM, P S BANERJEE, T K GOSWAMI, P J DAS, J CHAMUA, A A P MILTON, M ARAVIND, G BHUVANAPRIYA, K THILAGAVATHI, S K GHOSH, S M DEB, D BHATTACHARYA
    The Indian Journal of Animal Sciences.2015;[Epub]     CrossRef
  • Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam
    Galina N. Chelomina, Yulia V. Tatonova, Nguyen Manh Hung, Ha Duy Ngo
    International Journal for Parasitology.2014; 44(11): 795.     CrossRef
  • Mutation and Selection Cause Codon Usage and Bias in Mitochondrial Genomes of Ribbon Worms (Nemertea)
    Haixia Chen, Shichun Sun, Jon L. Norenburg, Per Sundberg, Tamir Tuller
    PLoS ONE.2014; 9(1): e85631.     CrossRef
  • Platyzoan mitochondrial genomes
    Alexandra R. Wey-Fabrizius, Lars Podsiadlowski, Holger Herlyn, Thomas Hankeln
    Molecular Phylogenetics and Evolution.2013; 69(2): 365.     CrossRef
  • Analysis of synonymous codon usage patterns in different plant mitochondrial genomes
    Meng Zhou, Xia Li
    Molecular Biology Reports.2009; 36(8): 2039.     CrossRef
  • DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins
    Xiang Jia Min, Donal A. Hickey
    DNA Research.2007; 14(5): 201.     CrossRef
  • Characterization of the Complete Mitochondrial Genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and Development of Molecular Markers for Differentiating Fish Tapeworms
    Kyu-Heon Kim, Hyeong-Kyu Jeon, Seokha Kang, Tahera Sultana, Gil Jung Kim, Keeseon S. Eom, Joong-Ki Park
    Molecules and Cells.2007; 23(3): 379.     CrossRef
  • Comparison of the phylogenetic performance of neodermatan mitochondrial protein‐coding genes
    Michael Hardman, Lotta M. Hardman
    Zoologica Scripta.2006; 35(6): 655.     CrossRef
  • Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus
    Nina Yasuda, Masami Hamaguchi, Miho Sasaki, Satoshi Nagai, Masaki Saba, Kazuo Nadaoka
    BMC Genomics.2006;[Epub]     CrossRef
  • 10,140 View
  • 89 Download
  • Crossref