Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935

The Korean Journal of Parasitology 2021;59(1):35-45.
Published online: February 19, 2021

1Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea

2Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea

3Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea

4Permatahati Mazas Foundation, Banda Aceh, Aceh Province, Indonesia

*Corresponding author (mulddang@snu.ac.kr)
• Received: November 11, 2020   • Revised: November 16, 2020   • Accepted: November 16, 2020

Copyright © 2021 by The Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 5,827 Views
  • 111 Download
  • 9 Web of Science
  • 9 Crossref
  • 9 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Development of a duplex loop-mediated isothermal amplification together with lateral flow dipstick assay for the detection and discrimination of parasitic infections in chickens between cestodes belonging to genus Raillietina and trematodes in family Echi
    Wasin Panich, Thanawan Tejangkura, Thapana Chontananarth
    Research in Veterinary Science.2025; 185: 105539.     CrossRef
  • The Nuclear Ribosomal Transcription Units of Two Echinostomes and Their Taxonomic Implications for the Family Echinostomatidae
    Yu Cao, Ye Li, Zhong-Yan Gao, Bo-Tao Jiang
    Biology.2025; 14(8): 1101.     CrossRef
  • Phylogeny and morphology of some Palearctic echinostomatid digeneans from rallid bird Fulica atra Linnaeus, 1758
    Sergei A. Vlasenkov, Mikhail Yu. Shchelkanov, Sergey G. Sokolov
    Biologia.2025; 80(11): 3079.     CrossRef
  • Catatropis indicus (Digenea: Notocotylidae) from ducks in Indonesia with a brief review of the genus Catatropis
    Jong-Yil Chai, Bong-Kwang Jung, Taehee Chang, Sooji Hong, Hyejoo Shin, Marzuki Bin Muhammad Abdullah
    Parasites, Hosts and Diseases.2025; 63(4): 303.     CrossRef
  • Development and utilization of a visual loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay for rapid detection of Echinostomatidae metacercaria in edible snail samples
    Wasin Panich, Phonkawin Jaruboonyakorn, Awika Raksaman, Thanawan Tejangkura, Thapana Chontananarth
    International Journal of Food Microbiology.2024; 418: 110732.     CrossRef
  • Molecular epidemiological analyses reveal extensive connectivity between Echinostoma revolutum (sensu stricto) populations across Eurasia and species richness of zoonotic echinostomatids in England
    Egie E. Enabulele, Scott P. Lawton, Anthony J. Walker, Ruth S. Kirk, Hudson Alves Pinto
    PLOS ONE.2023; 18(2): e0270672.     CrossRef
  • A new cryptic species of Echinostoma (Trematoda: Echinostomatidae) closely related to Echinostoma paraensei found in Brazil
    Marisa C. Valadão, Philippe V. Alves, Danimar López-Hernández, Jordana C. A. Assis, Paulo R. S. Coelho, Stefan M. Geiger, Hudson A. Pinto
    Parasitology.2023; 150(4): 337.     CrossRef
  • A new species ofEchinostoma(Trematoda: Echinostomatidae) from the ‘revolutum’ group found in Brazil: refuting the occurrence ofEchinostoma miyagawai(=E. robustum) in the Americas
    Marisa C. Valadão, Danimar López-Hernández, Philippe V. Alves, Hudson A. Pinto
    Parasitology.2022; 149(3): 325.     CrossRef
  • Echinostoma mekongi: Discovery of Its Metacercarial Stage in Snails, Filopaludina martensi cambodjensis, in Pursat Province, Cambodia
    Jong-Yil Chai, Woon-Mok Sohn, Jaeeun Cho, Bong-Kwang Jung, Taehee Chang, Keon Hoon Lee, Virak Khieu, Rekol Huy
    The Korean Journal of Parasitology.2021; 59(1): 47.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935
Korean J Parasitol. 2021;59(1):35-45.   Published online February 19, 2021
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935
Korean J Parasitol. 2021;59(1):35-45.   Published online February 19, 2021
Close

Figure

  • 0
  • 1
  • 2
Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935
Image Image Image
Fig. 1 Echinostoma miyagawai from a Pitalah duck in Aceh Province, Indonesia. (A) An adult worm showing its characteristic head collar with collar spines, oral and ventral suckers, uterus with eggs, cirrus sac, ovary, Mehlis’ gland, testes, and vitelline follicles. Acetocarmine-stained. Ventral view. Scale bar=0.72 mm. (B) Head collar equipped with 37 collar spines. Acetocarmine-stained. Ventral view. Scale bar=100 μm. (C) Line drawing of the head collar with 37 collar spines. Scale bar=100 μm.
Fig. 2 A phylogenetic tree of Echinostoma miyagawai in comparison with other 37-collar-spined ‘E. revolutum group’ constructed based on 197 bp of mitochondrial cox1 sequences. ●, our specimens.
Fig. 3 A phylogenetic tree of Echinostoma miyagawai in comparison with other 37-collar-spined ‘E. revolutum group’ constructed based on 401 bp of mitochondrial nad1 sequences. ●, our specimens.
Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935

Measurements of Echinostoma miyagawai adults in comparison with other 37-collar-spined Echinostoma species (unit: μm)

Species E. miyagawai (this study) (n=14) E. miyagawai [15] (n=13) E. revolutum [15] (n=16) E. paraulum [15] (n=10)





Organ Mean Range Mean Range Mean Range Mean Range
Body length (BL) 7,186 6,186–8,536 9,990 9,163–11,014 10,531 9,454–11,846 6,345 5,600–6,862

Body width 1 (BW1) 843 868–1,274 1,159 1,029–1,272 1,298 1,182–1,454 1,043 923–1,108

Body width 2 (BW2) 1,064 667–1,053 1,026 898–1,178 1,618 1,303–1,815 1,308 1,138–1,446

Body width 3 (BW3) 1,220 1,012–1,416 1,305 1,197–1,459 1,815 1,454–2,092 1,514 1,231–1,662

Head collar length (CL) 485 395–599 434 393–505 392 351–424 488 432–553

Head collar width (CW) 614 528–725 656 598–692 607 552–652 729 644–781

Oral sucker length (OSL) 267 227–307 305 262–337 316 261–358 287 265–318

Oral sucker width (OSW) 301 233–412 293 262–355 282 246–303 335 280–371

Angle spine length (ASL) 78 71–83 70 52–93 74 58–92 100 73–124

Angle spine with (ASW) 21 19–25 22 17–29 17 11–24 21 15–28

Lateral spine length (LSL) 81 75–91 76 67–87 79 64–91 101 85–120

Lateral spine width (LSW) 21 18–24 23 20–26 17 12–21 21 17–25

Dorsal spine length (DSL) 76 69–79 68 58–75 85 71–94 99 90–105

Dorsal spine width (DSW) 21 18–24 21 19–26 18 13–23 21 19–23

Prepharynx length (PL) 18 4–41 10 0–37 41 7–99 45 15–68

Pharynx length (PHL) 273 230–292 299 262–337 237 209–258 324 273–379

Pharynx width (PHW) 277 197–335 250 187–355 219 194–258 238 212–280

Esophagus length (ESL) 659 569–790 585 542–655 408 318–569 408 265–546

Cirrus sac length (CSL) 491 410–710 506 468–598 552 410–735 413 318–531

Cirrus sac width (CSW) 262 242–292 300 281–355 316 243–403 281 205–326

Seminal vesicle length (SVL) 244 205–330 - - 336 224–440 238 152–303

Seminal vesicle width (SVW) 133 82–183 - - 146 60–212 134 114–144

Ventral sucker length (VSL) 658 594–830 706 655–748 873 796–1,038 667 569–766

Ventral sucker width (VSW) 648 544–910 738 655–785 893 796–1,061 731 705–766

Ovary length (OVL) 281 198–342 283 243–355 349 288–394 150 114–182

Ovary width (OVW) 410 290–620 397 337–449 416 291–493 246 212–288

Mehlis’ gland length (MEL) 631 413–765 386 337–468 399 326–455 153 106–190

Mehlis’ gland width (MEW) 233 135–295 373 318–411 734 582–849 310 258–341

Ant. testis length (ATL) 534 403–653 564 430–692 788 629–932 384 341–455

Ant. testis width (ATW) 728 588–982 409 337–505 597 425–750 377 326–447

Post. testis length (PTL) 564 477–674 562 449–655 879 627–1,061 406 296–515

Post. testis width (PTW) 708 593–787 411 337–524 579 395–705 415 288–531

Egg length (EL) 93 79–105 95 94–96 114 108–125 113 104–122

Egg width (EW) 62 56–70 60 59–60 65 57–75 62 53–70

Forebody length (FORE) 1,121 912–1,269 1,408 1,253–1,533 1,369 1,200–1,662 1,218 985–1,600

ODIV 982 808–1,131 1,181 1,103–1,324 1,027 923–1,262 1,074 923–1,354

OVAR 3,923 3,536–4,311 4,856 4,507–5,348 4,461 3,969–5,046 3,043 2,739–3,385

TEND 2,497 2,245–2,795 3,081 2,824–3,329 3,653 3,000–4,308 2,059 1,262–2,431

OSW/PHW 1.09 0.88–1.30 0.97 0.78–1.11 1.29 1.15–1.54 1.41 1.24–1.58

BW1/BL (%) 11.7 9.6–14.0 11.6 11.2–12.5 12.4 11.2–14.3 16.5 15.0–19.8

BW2/BL (%) 14.8 13.1–17.0 10.3 9.7–10.9 15.4 13.8–17.4 20.7 18.9–24.7

BW3/BL (%) 17.1 14.2–20.9 13.1 12.4–13.6 17.3 15.2–19.5 23.9 21.5–26.9

FORE/BL (%) 15.6 14.0–17.2 14.1 13.4–14.9 13.0 10.9–14.8 19.3 15.5–26.3

CW/BW3 (%) 50.6 43.1–58.4 50.4 46.2–56.9 33.6 28.3–38.3 48.4 42.0–57.3

OVID/BL (%) 13.7 12.3–14.7 11.8 11.2–12.5 9.8 8.3–11.2 17.0 14.5–23.7

OVAR/BL (%) 54.7 50.3–57.7 48.6 47.7–49.7 42.5 39.1–46.2 48.1 43.5–57.0

TEND/BL (%) 34.8 31.2–36.7 30.9 30.1–31.9 34.6 31.4–37.4 32.3 22.0–35.4

ODIV, distance from anterior extremity to intestinal bifurcation; OVAR, distance from the posterior margin of ventral sucker to ovary; TEND, length of post-testicular region [15].

Sequence comparison of our samples with other 37-collar-spined Echinostoma spp. based on cox1 and nad1 region

cox1 nad1


Our samples (n=4)
99.0–100
Our samples (n=4)
99.5–100
E. miyagawai (MN116740; China; Fu et al.) 99.0–100 E. miyagawai (KP065635; Czech Republic; Georgieva et al.) 99.3–99.8

E. miyagawai (NC039532; China; Li et al.) 99.0–100 E. robustum (LC224091; Bangladesh; Mohanta et al.) 99.3–99.8

E. miyagawai (KP455602; Thailand; Nagataki et al.) 98.6–100 E. miyagawai (KP455620; Thailand; Nagataki et al.) 99.0–99.6

E. miyagawai (GU324943; Thailand; Saijuntha et al.) 98.8–100 E. friedi (AJ564379; Spain; Marcilla et al.) 99.3–99.8

E. revolutum American lineage (GQ463016; USA; Detwiler et al.) 92.6–93.2 E. revolutum (AF026287; Australia; Morgan and Blair) 98.5–99.0

E. revolutum Southeast Asian lineage (GU324945; Thailand; Saijuntha et al.) 90.4–91.6 E. miyagawai (KY436400; New Zealand; Georgieva et al.) 97.3–97.8

E. robustum (GQ463053; USA; Detwiler et al.) 94.3–94.8

E. robustum (GQ463055; Brazil; Detwiler et al.) 90.5–91.0

E. revolutum American lineage (GQ463061; USA; Detwiler et al.) 88.8
Table 1 Measurements of Echinostoma miyagawai adults in comparison with other 37-collar-spined Echinostoma species (unit: μm)

ODIV, distance from anterior extremity to intestinal bifurcation; OVAR, distance from the posterior margin of ventral sucker to ovary; TEND, length of post-testicular region [15].

Table 2 Sequence comparison of our samples with other 37-collar-spined Echinostoma spp. based on cox1 and nad1 region